
django-tagulous Documentation
Release 1.3.3

Richard Terry

Apr 10, 2022

CONTENTS

1 Contents 3
1.1 Introduction . 3
1.2 Installation . 6
1.3 Example Usage . 10
1.4 Tag String Parser . 18
1.5 Models . 20
1.6 Forms . 36
1.7 Tag Options . 39
1.8 Views and Templates . 44
1.9 Admin . 46
1.10 Changelog . 48
1.11 Upgrading . 55
1.12 Contributing . 60

i

ii

django-tagulous Documentation, Release 1.3.3

Tagulous is a fully-featured tagging library for Django built on ForeignKey and ManyToManyField, giving you all
their normal power with a sprinkling of tagging syntactic sugar, and a full set of extra features.

See also:
Read this online at http://radiac.net/projects/django-tagulous/

CONTENTS 1

http://radiac.net/projects/django-tagulous/

django-tagulous Documentation, Release 1.3.3

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Introduction

1.1.1 Features

• Easy to install - simple requirements, simple syntax, lots of options

• Based on ForeignKey and ManyToManyField, so it’s easy to query

• Autocomplete support built in, if you want it

• Supports multiple independent tag fields on a single model

• Can be used as a CharField with dynamic choices

• Supports trees of nested tags, for detailed categorisation

• Admin support for managing tags and tagged models

1.1.2 Quickstart

Install with pip install django-tagulous, add tagulous to Django’s INSTALLED_APPS and define the serializ-
ers, then start adding tag fields to your model:

from django.db import models
from tagulous.models import SingleTagField, TagField

class Person(models.Model):
name = models.CharField(max_length=255)
title = SingleTagField(initial="Mr, Mrs, Miss, Ms")
skills = TagField()

A SingleTagField is based on a ForeignKey, and a TagField is based on a ManyToManyField.

They have relationships to a TagModel, which is automatically created for you if you don’t specify one.

Assign strings to the fields to create new tags:

myperson = Person.objects.create(name='Bob', title='Mr', skills='run, hop')
myperson.skills == 'run, hop'
myperson.skills = ['jump', 'kung fu']
myperson.save()
myperson.skills == 'jump, "kung fu"'
runners = Person.objects.filter(skills='run')

3

django-tagulous Documentation, Release 1.3.3

Use them like a normal Django relationship in your queries:

qs = MyRelatedModel.objects.filter(
person__skills__name__in=['run', 'jump'],

)

As well as this you also get:

• tag field support in public forms and the admin site, including autocompletion

• easy to build tag clouds

• ability to nest tags in trees for more complex categorisation

Take a look at the Example Usage to see what else you can do, or read on through the documentation to see exactly
how everything works.

1.1.3 Glossary

This documentation uses a few terms to explain the ways tags are stored and set:

Tagged model A model which has been tagged using Model Fields.

Tag model A model where the tag definition is stored. It must be a subclass of tagulous.models.TagModel, but will
be auto-generated by a tag field if it is not explicitly set.

Tag An instance of a tag model

Tag name The unique name of a tag, eg "run". This is the value stored on the name attribute of a tag model.

Tag string A tag string is a list of tag names stored in a single string, in tag format, eg "run, jump, hop". The
format of this string is defined by the Tag String Parser.

1.1.4 Comparison with other tagging libraries

Popular tagging libraries for Django include: * django-taggit * django-tagging * django-tagging-ng

If you are already using one of these, read Converting to Tagulous to see what is involved in switching to Tagulous.

Tagulous is easier to use and has more features, and is a proven library which has been in use since Django 1.4.

Real relations

The Tagulous TagField is based on ManyToManyField, so you can set and query tag objects like a normal M2M
field, but also use tag strings and lists of tag names.

django-tagging and django-taggit both use generic relations, which tend to be second-class citizens in Django - they are
often slower and lack functionality compared to native FK and M2M fields. This means they have a more convoluted
syntax and queries are more complex and limited.

4 Chapter 1. Contents

https://github.com/alex/django-taggit
https://github.com/Fantomas42/django-tagging
https://github.com/svetlyak40wt/django-tagging-ng

django-tagulous Documentation, Release 1.3.3

Separate tag models

In Tagulous, tag models can be independent or shared - this allows you to have multiple tag fields on one model which
each have their own sets of tags, or share sets of tags between fields and models as you wish - see the Tag Models
documentation for more details.

You can also easily define custom tag models in Tagulous, to store additional data on with tags - see the Custom Tag
Models documentation and this example for more details.

django-taggit can be configured to use custom models so it can have separate sets of tags, but requires a bit more work.
django-tagging does not support separate sets of tags or custom models.

More customisable

Tagulous is designed to be configurable. For example, it lets you protect tags from being removed when they’re no
longer in use, they can be case sensitive, forced to lowercase, you can specify a maximum number of tags for a field,
and whether or not space should be used as a delimiter. See the Tag Options documentation for more details.

django-tagging only lets you force tags to lowercase, and django-taggit only lets you toggle case sensitivity.

Built-in autocomplete

Tagulous has built-in support for autocomplete; tags can either be embedded into the page, or queried using the ajax
views provided. It uses Select2, but it has been designed to be easy to switch that out for something else using auto-
complete adaptors.

The JavaScript and Python code is closely integrated - the same tag parser has been implemented in both to ensure tag
strings are treated consistently.

Neither django-tagging and django-taggit support autocomplete out of the box; you need to add another library to do
that.

Better admin support

Tagulous tag fields are first-class citizens in Django’s admin site. You can show them in list_display, use them to
filter your model, and can register tag models to rename and merge tags. Tag fields and autocomplete work throughout
admin forms and inlines. See the Admin documentation for more details.

django-tagging and django-taggit tags cannot be shown in list_display, and there are no special admin tools.

Single tag mode

The standard TagField is based on a ManyToManyField for conventional tagging, but Tagulous also provides a
SingleTagField, which is based on ForeignKey. This acts more like a CharField with dynamic choices that
users can add to at runtime. See the Model Fields documentation for more details.

django-tagging and django-taggit don’t have an equivalent feature.

1.1. Introduction 5

django-tagulous Documentation, Release 1.3.3

Hierarchical tag trees

Tagulous has a tree mode, which lets you create sub-tags using the / character in a tag name. You can query and
navigate a tag tree as you would expect (querying for parents, siblings, children, descendants etc), as well as rename
and merge subtrees from your code or the Django admin. See the Tag Trees documentation for more details.

django-tagging and django-taggit don’t have an equivalent feature.

And there’s more

Tagulous is packed with small features which make it easy to work with, such as:

• a more robust tag string parser with better support for quoted tags.

• automatic slug generation, and path generation for tree tags.

• tag model managers and querysets have a weight method to make it easy to build custom tag clouds.

1.2 Installation

1.2.1 Instructions

1. Install django-tagulous:

pip install django-tagulous

2. In your site settings, add Tagulous to INSTALLED_APPS and tell Django to use the Tagulous serialization modules:

INSTALLED_APPS = (
...
'tagulous',

)

SERIALIZATION_MODULES = {
'xml': 'tagulous.serializers.xml_serializer',
'json': 'tagulous.serializers.json',
'python': 'tagulous.serializers.python',
'yaml': 'tagulous.serializers.pyyaml',

}

There are other global Settings you can add here.

3. Add Tagulous fields to your project - see Models, Forms and Example Usage.

Remember to run manage.py collectstatic to collect the JavaScript and CSS resources.

When you want to upgrade your Tagulous installation in the future, check Upgrading to see if there are any special
actions that you need to take.

Note: If you use MySQL there are some limitations you should be aware of - see:

• the setting for max length for limitations of maximum tag lengths

• the tag option case_sensitive for limitations of case sensitivity.

6 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

1.2.2 Settings

Note: Model and form field options are managed separately by Tag Options.

TAGULOUS_NAME_MAX_LENGTH TAGULOUS_SLUG_MAX_LENGTH TAGULOUS_LABEL_MAX_LENGTH

Default max lengths for tag models.

Note: When MySQL is using utf8mb4 charset, all unique fields have a max-length of 191 characters,
because MySQL max key length in 767 bytes and utf8mb4 reserves 4 bytes per character, thus 767/4 =
191.

If you use MySQL, we therefore recommend the following settings:

TAGULOUS_NAME_MAX_LENGTH=191

Default:

TAGULOUS_NAME_MAX_LENGTH = 255
TAGULOUS_SLUG_MAX_LENGTH = 50
TAGULOUS_LABEL_MAX_LENGTH = TAGULOUS_NAME_MAX_LENGTH

TAGULOUS_SLUG_TRUNCATE_UNIQUE Number of characters to allow for the numerical suffix when finding a unique
slug, ie if set to 5, the slug will be truncated by up to 5 characters to allow for a suffix of up to _9999.

Default: 5

TAGULOUS_SLUG_ALLOW_UNICODE If True unicode will be allowed in slugs. If False tag slugs will be forced to
ASCII.

As with Django’s slugify, this is off by default.

Default: False

TAGULOUS_AUTOCOMPLETE_JS TAGULOUS_ADMIN_AUTOCOMPLETE_JS

List of static JavaScript files required for Tagulous autocomplete. These will be added to the form media
when a Tagulous form field is used.

The order is important: the adaptor must appear last in the list, so that it is loaded after its dependencies.

If you use jQuery elsewhere on your site, you may need to remove jquery.js to avoid conflicts.

Default:

TAGULOUS_AUTOCOMPLETE_JS = (
"tagulous/lib/jquery.js",
"tagulous/lib/select2-4/js/select2.full.min.js",
"tagulous/tagulous.js",
"tagulous/adaptor/select2-4.js",

)

TAGULOUS_AUTOCOMPLETE_CSS TAGULOUS_ADMIN_AUTOCOMPLETE_CSS

List of static CSS files required for Tagulous autocomplete. These will be added to the form media when
a Tagulous form field is used.

The default list will use the included version of Select2.

1.2. Installation 7

django-tagulous Documentation, Release 1.3.3

Default:

TAGULOUS_AUTOCOMPLETE_CSS = {
'all': ['tagulous/lib/select2-4/css/select2.min.css']

}

TAGULOUS_AUTOCOMPLETE_SETTINGS Any settings to pass to the JavaScript via the adaptor. They can be overridden
by a field’s autocomplete_settings option.

For example, the select2 control defaults to use the same width as the form element it replaces; you can override
this by passing their width option (see their docs on appearance) as an autocomplete setting:

TAGULOUS_AUTOCOMPLETE_SETTINGS = {"width": "75%"}

If set to None, no settings will be passed.

Default: None

TAGULOUS_WEIGHT_MIN The default minimum value for the weight queryset method.

Default: 1

TAGULOUS_WEIGHT_MAX The default maximum value for the weight queryset method.

Default: 6

TAGULOUS_ENHANCE_MODELS Advanced usage - only use this setting if you know what you’re doing.

Tagulous automatically enhances models, managers and querysets to fully support tag fields. This has the theo-
retical potential for unexpected results, so this setting lets the cautious disable this enhancement.

If you set this to False you will need to manually add Tagulous mixins to your models, managers and querysets.

See Tagged Models for more information.

Default: True

1.2.3 System checks

Tagulous adds to the Django system check framework with the following:

tagulous.W001 settings.SERIALIZATION_MODULES has not been configured as expected

A common installation error is to forget to set SERIALIZATION_MODULES as described in the installation in-
structions.

This is a straight string comparison. If your serialisation modules don’t match what Tagulous is expecting (you’re
subclassing the Tagulous modules, for example), you can disable this warning with the setting:

SILENCED_SYSTEM_CHECKS = ["tagulous.W001"]

8 Chapter 1. Contents

https://select2.org/appearance

django-tagulous Documentation, Release 1.3.3

1.2.4 Converting to Tagulous

If you’re already using a tagging library which you’d like to replace with Tagulous, freeze the tags into a temporary
column, remove the old tagging code, add a new tagulous TagField, then copy the tags back across.

Warning: This hasn’t been tested with your data, so back up your database first, just in case.

1. Create a schema migration to add a TextField to your tagged model, where we’ll temporarily store the tags for
that instance.

django-taggit example:

class MyModel(models.Model):
...
tags = TaggableManager()
tags_store = models.TextField(blank=True)

django-tagging example:

class MyModel(models.Model):
...
tags_store = models.TextField(blank=True)

tagging.register(MyModel)

2. Create a data migration to copy the tags into the new field as a string.

django-taggit example:

def store_tags(apps, schema_editor):
import tagulous
model = apps.get_model('myapp', 'MyModel')
for obj in model.objects.all():

obj.tags_store = tagulous.utils.render_tags(obj.tags.all())

class Migration(migrations.Migration):
operations = [

migrations.RunPython(store_tags)
]

The example for django-tagging would be the same, only replace obj.tags.all() with obj.tags.

3. Remove the old tagging code from your model, and create a schema migration to clean up any unused fields or
models.

4. Add a TagField to your tagged model and create a schema migration:

import tagulous
class MyModel(models.Model):

tags = tagulous.models.TagField()
tags_store = models.TextField(blank=True)

Be careful to set appropriate arguments, ie blank=True if some of your tags_store fields may be empty.

5. Create a data migration to copy the tags into the new field.

Example:

1.2. Installation 9

django-tagulous Documentation, Release 1.3.3

def load_tags(apps, schema_editor):
model = apps.get_model('myapp', 'MyModel')
for obj in model.objects.all():

obj.tags = obj.tags_store
obj.tags.save()

class Migration(migrations.Migration):
operations = [

migrations.RunPython(load_tags)
]

6. Create a schema migration to remove the temporary tag storage field (tag_store in these examples)

7. Apply the migrations and start using tagulous

1.3 Example Usage

This section contains code examples of how to set up and use Tagulous. If you’d like a more interactive demonstration,
there is a static demo showing the front-end, or an example project for you to install locally and play with some of these
code examples.

1.3.1 Automatic tag models

This simple example creates a SingleTagField (a glorified ForeignKey) and two TagField (a typical tag field,
using ManyToManyField):

from django.db import models
import tagulous.models

class Person(models.Model):
title = tagulous.models.SingleTagField(

label="Your preferred title",
initial="Mr, Mrs, Ms",

)
name = models.CharField(max_length=255)
skills = tagulous.models.TagField(

force_lowercase=True,
max_count=5,

)

• This will create two new models at runtime to store the tags, Tagulous_Person_title and
Tagulous_Person_skills.

• These models will act like normal models, and can be managed in the database using Django migrations

• Person.title will now act as a ForeignKey to Tagulous_Person_title

• Person.skills will now act as a ManyToManyField to Tagulous_Person_skills

Initial tags need to be loaded into the database with the Loading initial tags management command.

You can use the fields to assign and query values:

10 Chapter 1. Contents

http://radiac.net/projects/django-tagulous/demo/
https://github.com/radiac/django-tagulous/tree/master/example

django-tagulous Documentation, Release 1.3.3

Person.skills.tag_model == Tagulous_Person_skills

Set tags on an instance with a string
instance = Person()
instance.skills = 'run, "kung fu", jump'

They're not committed to the database until you save
instance.save()

Get a list of all tags
tags = Person.skills.tag_model.objects.all()

Assign a list of tags
instance.skills = ['jump', 'kung fu']
Tags are readable before saving
str(instance.skills) == 'jump, "kung fu"'
instance.save()

Step through the list of instances in the tag model
for skill in instance.skills.all():

do_something(skill)

Compare tag fields
if instance.skills == other.skills:

return True

1.3.2 Custom models

You can create a tag model manually, and specify it in one or more tag fields:

import tagulous.models

class Hobbies(tagulous.models.TagModel):
class TagMeta:

Tag options
initial = "eating, coding, gaming"
force_lowercase = True
autocomplete_view = 'myapp.views.hobbies_autocomplete'

class Person(models.Model):
name = models.CharField(max_length=255)
hobbies = tagulous.models.TagField(to=Hobbies)

Options for a custom tag model must be set in TagMeta - you cannot pass them as arguments in tag fields.

See Tag Models to see which field names Tagulous uses internally.

1.3. Example Usage 11

django-tagulous Documentation, Release 1.3.3

1.3.3 Tag Trees

A tag field can specify tree=True to use slashes in tag names to denote children:

import tagulous.models
class Person(models.Model):

name = models.CharField(max_length=255)
skills = tagulous.models.TagField(

force_lowercase=True,
max_count=5,
tree=True,

)

This can’t be set in the tag model’s TagMeta object; the tag model must instead subclass tagu-
lous.models.TagTreeModel:

class Hobbies(tagulous.models.TagTreeModel):
class TagMeta:

initial = "food/eating, food/cooking, gaming/football"
force_lowercase = True
autocomplete_view = 'myapp.views.hobbies_autocomplete'

class Person(models.Model):
name = models.CharField(max_length=255)
hobbies = tagulous.models.TagField(to=Hobbies)

You can add tags as normal, and then query using tree relationships:

person.hobbies = "food/eating/mexican, sport/football"
person.save()

Get all root nodes: "food", "gaming" and "sport"
root_nodes = Hobbies.objects.filter(parent=None)

Get the direct children of food: "food/eating", "food/cooking"
food_children = Hobbies.objects.get(name="food").children.all()

Get all descendants of food:
"food/eating", "food/eating/mexican", "food/cooking"
food_children = Hobbies.objects.get(name="food").get_descendants()

See Tag Trees to see a full list of available tree methods and properties.

1.3.4 Tag URL

You can set the get_absolute_url tag option to a callable to give tag objects absolute URLs without needing to
create a custom tag model:

from django.db import models
from django.core.urlresolvers import reverse
import tagulous.models

class Person(models.Model):
(continues on next page)

12 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

(continued from previous page)

name = models.CharField(max_length=255)
skills = tagulous.models.TagField(

get_absolute_url=lambda tag: reverse(
'myapp.views.by_skill', kwargs={'skill_slug': tag.slug}

),
)

The get_absolute_url method can now be called as normal; for example, from a template:

{% for skill in person.skills.all %}
{{ skill.name }}

{% endfor %}

If you are using a tree, you will want to use the path instead:

skills = tagulous.models.TagField(
tree=True,
get_absolute_url=lambda tag: reverse(

'myapp.views.by_skill', kwargs={'skill_path': tag.path}
),

)

See the get_absolute_url option for more details.

1.3.5 ModelForms

A ModelForm with tag fields needs no special treatment:

from django.db import models
from django import forms
import tagulous.models

class Person(models.Model):
name = models.CharField(max_length=255)
skills = tagulous.models.TagField()

class PersonForm(forms.ModelForm):
class Meta:

fields = ['name', 'skills']
model = Person

They are normal forms so can be used in normal ways; for example, with class-based views:

from django.views.generic.edit import CreateView

class PersonCreate(CreateView):
model = Person
fields = ['name', 'skills']

or with view functions:

1.3. Example Usage 13

django-tagulous Documentation, Release 1.3.3

def person_create(request, template_name="my_app/person_form.html"):
form = PersonForm(request.POST or None)
if form.is_valid():

form.save()
return redirect('home')

return render(request, template_name, {'form': form})

However, because a TagField is based on a ManyToManyField, if you save your form using commit=False, you will
need to call save_m2m to save the tags:

class Pet(models.Model):
owner = models.ForeignKey('auth.User')
name = models.CharField(max_length=255)
skills = tagulous.models.TagField()

class PetForm(forms.ModelForm):
class Meta:

fields = ['owner', 'name', 'skills']
model = Pet

def pet_create(request, template_name="my_app/pet_form.html"):
form = PetForm(request.POST or None)
if form.is_valid():

pet = form.save(commit=False)
pet.owner = request.user

Next line will save all non M2M fields (including SingleTagField)
pet.save()

Next line will save any ``TagField`` values
form.save_m2m()

return redirect('home')
return render(request, template_name, {'form': form})

As shown above, this only applies to TagField - a SingleTagField is based on ForeignKey, so will be saved without
needing save_m2m.

See Forms for how to use tag fields in forms.

1.3.6 Forms without models

Tagulous form fields take tag options as a single TagOptions object, rather than as separate arguments as a model
form does:

from django import forms
import tagulous.forms

class PersonForm(forms.ModelForm):
title = tagulous.forms.SingleTagField(

autocomplete_tags=['Mr', 'Mrs', 'Ms']
)
name = forms.CharField(max_length=255)

(continues on next page)

14 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

(continued from previous page)

skills = tagulous.forms.TagField(
tag_options=tagulous.models.TagOptions(

force_lowercase=True,
),
autocomplete_tags=['running', 'jumping', 'judo']

)

A SingleTagField will return a string, and a TagField will return a list of strings:

form = PersonForm(data={
'title': 'Mx',
'skills': 'Running, judo',

})
assert form.is_valid()
assert form.cleaned_data['title'] == 'Mx'
assert form.cleaned_data['skills'] == ['running', 'judo']

See Forms for how to use tag fields in forms.

1.3.7 Filtering embedded autocomplete

Filtering autocomplete to initial tags only

If it often useful for autocomplete to only list your initial tags, and not those added by others; Tagulous makes this easy
with the autocomplete_initial field option:

class Person(models.Model):
title = tagulous.models.SingleTagField(

label="Your preferred title",
initial="Mr, Mrs, Ms",
autocomplete_initial=True,

)

Even if users add new tags, only the initial tags will ever be shown as autocomplete options.

See autocomplete_initial for more details.

Filtering autocomplete by related fields

This example will embed the tags into the HTML of the response; if you are using autocomplete views, see Filtering
an autocomplete view instead.

Filter the autocomplete_tags queryset after the form initialises:

from django.db import models
from django import forms
import tagulous

class Pet(models.Model):
owner = models.ForeignKey('auth.User')
name = models.CharField(max_length=255)
skills = tagulous.models.TagField()

(continues on next page)

1.3. Example Usage 15

django-tagulous Documentation, Release 1.3.3

(continued from previous page)

class PetForm(forms.ModelForm):
def __init__(self, user, *args, **kwargs):

super(PetForm, self).__init__(*args, **kwargs)

Filter skills to initial skills, or ones added by this user
self.fields['skills'].autocomplete_tags = \

self.fields['skills'].autocomplete_tags.filter_or_initial(
pet__owner=user

).distinct()
class Meta:

model = Pet

Then call PetForm with the user as the first argument, for example:

def add_pet(request):
form = PetForm(request.user)
...

For more details, see filter_by_related and Filtering autocomplete tags.

1.3.8 Autocomplete AJAX Views

To use AJAX to populate your autocomplete using JavaScript, set the tag option autocomplete_view in your models
to a value for reverse():

class Person(models.Model):
name = models.CharField(max_length=255)
skills = tagulous.models.TagField(

autocomplete_view='person_skills_autocomplete'
)

You can then use the default autocomplete views directly in your urls:

import tagulous
from myapp.models import Person
urlpatterns = [

url(
r'^person/skills/autocomplete/',
tagulous.views.autocomplete,
{'tag_model': Person},
name='person_skills_autocomplete',

),
]

See Views and Templates for more details.

16 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

Filtering an autocomplete view

Add a wrapper function which filters the queryset before it calls the normal autocomplete view:

@login_required
def autocomplete_pet_skills(request):

return tagulous.views.autocomplete(
request,
Pet.skills.tag_model.objects.filter_or_initial(

pet__owner=user
).distinct()

)

1.3.9 Django REST Framework

The Django REST framework’s ModelSerializer will serialize tag fields to their primary keys; for example:

class PersonKeySerializer(ModelSerializer):
class Meta:

model = Person
fields = ["name", "title", "skills"]

person = Person.objects.create(name="adam", title="mr", skills="run, jump")
PersonKeySerializer(Person).data == {

"name": "adam",
"title": 1,
"skills": [1, 2]

If you’d prefer to serialize to strings, use the Tagulous TagSerializer:

from tagulous.contrib.drf import TagSerializer

class PersonStringSerializer(TagSerializer):
class Meta:

model = Person
fields = ["name", "title", "skills"]

person = Person.objects.create(name="adam", title="mr", skills="run, jump")
PersonStringSerializer(Person).data == {

"name": "adam",
"title": "mr",
"skills": ["run", "jump"]

1.3. Example Usage 17

django-tagulous Documentation, Release 1.3.3

1.4 Tag String Parser

Tagulous model and form fields accept a tag string value - a list of tag names separated by spaces or commas:

These will parse to 'run', 'jump', 'hop'
'run jump hop'
'run,jump,hop'

If the tag string contains both spaces and commas, commas take priority. Spaces at the start or end of a tag name are
ignored by the parser:

These will parse to 'run', 'shot put', 'hop'
This is also how Tagulous will render these tags
'run, shot put, hop'

If a tag name contains a space or a comma it should be escaped by quote marks for clarity, and will be when Tagulous
renders the tag string:

This is how Tagulous will render 'run', 'shot put'
'run, "shot put"'

Again, quoted tag names can be separated by spaces or commas, and commas take priority:

These will parse to 'run', 'shot put', 'hop'
'run "shot put" hop'
'run,"shot put",hop'

But this will parse to 'run "shot put"' 'hop'
'run "shot put", hop'

If the tag model is a tree, the tag name is the full path, which is split on the / character into a path of tag nodes; the tag
label is the final part of the path. The parser ignores a single slash if it is escaped with another, ie slash//escaped.

If the tag field has space_delimiter set to False then only commas will be used to separate tags.

The parser is implemented in both Python and JavaScript for consistency.

For more examples and how the parser treats odd edge cases, see the examples used for testing the parser in
tests/test_utils.py and tests/spec/javascripts/tagulous.spec.js.

1.4.1 Using the parser directly

Normally Tagulous uses the parser automatically behind the scenes when needed; however, there may be times when
you need to parse or render tag strings manually - for example, when Converting to Tagulous or Writing a custom
autocomplete adaptor.

18 Chapter 1. Contents

https://github.com/radiac/django-tagulous/blob/master/tests/test_utils.py
https://github.com/radiac/django-tagulous/blob/master/tests/spec/javascripts/tagulous.spec.js

django-tagulous Documentation, Release 1.3.3

In Python

The python parser can be found in tagulous.utils:

tag_names = tagulous.utils.parse_tags(tag_string, max_count=0, space_delimiter=True)
Given a tag string, returns a sorted list of unique tag names.

The parser does not attempt to enforce force_lowercase or case_sensitive options - these should be applied before
and after parsing, respectively.

The optional max_count argument defaults to 0, which means no limit. For any other value, if more tags are
returned than specified, the parser will raise a ValueError.

The optional space_delimiter argument defaults to True, to allow either spaces or commas to be used as
deliminaters to separate the tags, with priority for commas. If False, only commas will be used as the delimiter.

tag_string = tagulous.utils.render_tags(tag_names) Given a list of tags or tag names, generate a tag
string.

node_labels = tagulous.utils.split_tree_name(tag_name) Given a tree tag name, split it on valid / char-
acters into a list of labels for each node in the tag’s path.

tag_name = tagulous.utils.join_tree_name(parts) Given a list of node labels, return a tree tag name.

In JavaScript

The JavaScript parser will normally be automatically added to the page by tag fields, as one of the scripts in
TAGULOUS_AUTOCOMPLETE_JS (see Settings). However, if for some reason you want to use it without a tag field,
you can add it to your page manually with:

<script src="{% static "tagulous/tagulous.js %}"></script>

The parser adds the global variable Tagulous:

tagNames = Tagulous.parseTags(tagString, spaceDelimiter=true, withRaw=false) Given a tag
string, returns a sorted list of unique tag names

If spaceDelimiter=false, only commas will be used to separate tag names. If it is unset or true, spaces are
used as well as commas.

The option withRaw=true is intended for use when parsing live input; the function will instead return [tags,
raws], where tags is a list of tags which is unsorted and not unique, and raws is a list of raw strings which
were left after the corresponding entry in tags was parsed. For example:

var result = Tagulous.parseTags('one,two,three', true, true),
tags = result[0],
raws = parsed[1];

tags === ['one', 'two', 'three'];
raws === ['two,three', 'three', null];

If the last tag is not explicitly ended with a delimiter, the corresponding item in raws will be null instead of an
empty string, to indicate that the parser unexpectedly ran out of characters.

This is useful when parsing live input if the last item in raws is an empty string the tag has bee closed; if it is
null then the tag is still being entered.

tagString = Tagulous.renderTags(tagNames) Given a list of tag names, generate a tag string.

1.4. Tag String Parser 19

django-tagulous Documentation, Release 1.3.3

1.5 Models

Tagulous provides two new model fields - tagulous.models.TagField and tagulous.models.SingleTagField, which you
use to add tags to your existing models to make them tagged models. They provide extra tag-related functionality.

They can also be queried like a normal Django ForeignKey or ManyToManyField, but with extra query enhancements
to make working with tags easier.

Tags are stored in tag model subclasses, which can either be unique to each different tag field, or can be shared between
them. If you don’t specify a tag model on your field definition, one will be created for you automatically.

Tags can be nested using tag trees. There is also support for database migrations.

1.5.1 Model Fields

Tagulous offers two new model field types:

• tagulous.models.TagField - conventional tags using a ManyToManyField relationship.

• tagulous.models.SingleTagField - the same UI and functionality as a TagField but for a single tag, using a
ForeignKey relationship.

These will automatically create the models for the tags themselves, or you can provide a custom model to use instead
with to - see Custom Tag Models for more details.

Tagulous lets you get and set string values using these fields, while still leaving the underlying relationships available.
For example, not only can you assign a queryset or list of tag primary keys to a TagField, but you can also assign a
list of tag names, or a tag string to parse.

Like a CharField, changes made by assigning a value will not be committed until the model is saved, although you
can still make immediate changes by calling the standard m2m methods add, remove and clear.

If TAGULOUS_ENHANCE_MODELS is True (which it is by default - see Settings), you can also use tag strings and lists of
tag names in get and filter, and model constructors and object.create() - see Tagged Models for more details.

Model Field Arguments

The SingleTagField supports most standard ForeignKey arguments, except for to_field and rel_class.

The TagField supports most normal ManyToManyField arguments, except for db_table, through and
symmetrical. Also note that blank has no effect at the database level, it is just used for form validation - as is
the case with a normal ManyToManyField.

The related_name will default to <field>_set, as is normal for a ForeignKey or ManyToManyField. If using the
same tag table on multiple fields, you will need to set this to something else to avoid clashes.

Auto-generating a tag model

If the to argument is not set, a tag model will be auto-generated for you. It will be given a class name based on the
names of the tagged model and tag field; for example, the class name of the auto-generated model for MyModel.tags
would be Tagulous_MyModel_tags.

When auto-generating a model, any model option can be passed as a field argument - see the Automatic tag models
example.

If you want to override the default base class, for convenience you can specify a custom base class for the auto tag
model - see the to_base=MyTagModelBase argument for details.

20 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

Specifying a tag model

You can specify the tag model for the tag field to use with the to argument. You cannot specify any tag options.

to=MyTagModel (or first unnamed argument)

Manually specify a tag model for this tag field. This can either be a reference to the tag model class, or string reference
to it in the format app.model.

This will normally be a custom tag model, which must be a subclass of tagulous.models.TagModel.

It can also be a reference to a tag model already auto-generated by another tag field, eg to=MyOtherModel.tags.
tag_model, although you must be confident that MyOtherModel will always be defined first.

It can also be a string containing the name of the tag model, eg to='MyTagModel'. However, this is resolved using
Django’s standard model name resolution, so you have to reference auto-generated models by their class name, not via
the field - eg to='otherapp.Tagulous_MyOtherModel_tags'.

If the tagged model for this field is also a custom tag model, you can specify a recursive relationship as normal, using
'self'.

If it is a custom tag model, it should have a TagMeta class. Fields which specify their tag model cannot provide new
tag model options; they will take their options from the model - see Tag Options for more details.

This argument is optional; if omitted, a tag model will be auto-generated for you.

Default: Tagulous_<ModelName>_<FieldName> (auto-generated)

to_base=MyTagModelBase

You can specify a base class to use for an auto-generated tag model, instead of using TagModel.

This can be useful on complex sites where multiple auto-generated tag models need to share common custom func-
tionality - for example, tracking and filtering by user who creates the tags. This argument will allow you to define one
base class and re-use it across your project with less boilerplate than defining many empty custom tag models.

Default: tagulous.models.TagModel

tagulous.models.SingleTagField

Unbound field

An unbound SingleTagField (called on a model class, eg MyModel.tag) acts in the same way an unbound
ForeignKey field would, but also has:

tag_model The related tag model

tag_options A TagOptions class, containing the options from the tag model’s TagMeta or passed as arguments when
initialising the field.

1.5. Models 21

django-tagulous Documentation, Release 1.3.3

Bound to an instance

A bound SingleTagField (called on an instance, eg instance.tags) acts in a similar way to a bound ForeignKey,
but with some differences:

Assignment (setter) A bound SingleTagField can be assigned a tag (an instance of the tag model) or a tag name.

If it is passed None, a current tag will be cleared if it is set.

The instance must be saved afterwards.

Example:

person.title = "Mr"
person.save()

Evaluation (getter) The value of a bound SingleTagField will return an instance of the tag model. The tag may
not exist in the database yet (its pk may be None).

Example:

tag = person.title
report = "Tag %s used %d times " % (tag.name, tag.count)

The tag_model and tag_options attributes are not available on a bound field. If you only have an instance of the
tagged model, you can access them by finding its class, eg type(person).title.tag_model.

tagulous.models.TagField

Unbound field

An unbound TagField (called on a model class, eg MyModel.tags) acts in the same way an unbound
ManyToManyField would, but also has:

tag_model The related tag model

tag_options A TagOptions class, containing the options from the tag model’s TagMeta or passed as arguments when
initialising the field.

Bound to an instance

A bound TagField (called on an instance, eg instance.tags) acts in a similar way to a bound ManyToManyField,
but with some differences:

Assignment (setter) A bound TagField can be assigned a tag string or an iterable of tags or tag names, eg a list of
strings, or a queryset of instances of the tag model.

If it is passed None, any current tags will be cleared.

The instance must be saved afterwards.

Example:

person.skills = 'Judo, "Kung Fu"'
person.save()

Evaluation (getter) A bound TagField will return a tagulous.models.TagRelatedManager object, which has func-
tions to get and set tag values.

22 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

tagulous.models.TagRelatedManager

A TagRelatedManager is a subclass of Django’s standard RelatedManager, so you can do anything you would
normally do with a bound ManyToManyField:

person.skills.get(name='judo')
tags = person.skills.all()
person.skills.add(MyTag)
person.skills.clear()

Because it’s a relationship to a tag model, you can also filter by its fields:

filtered_tags = person.skills.filter(name__startswith='a')
popular_tags = person.skills.filter(count__gte=10)

A TagRelatedManager also provides access to the field’s tag_model and tag_options:

person.skills.tag_model.objects.all()
is_lowercase = person.skills.tag_options.force_lowercase

It also provides the following additional methods:

set_tag_string(tag_string)

Sets the tags for this instance, given a tag string.

person.skills.set_tag_string('Judo, "Kung Fu"')
person.save()

set_tag_list(tag_list)

Sets the tags for this instance, given an iterable of tag names or tag instances.

person.skills.set_tag_list(['Judo', kung_fu_tag])
person.save()

get_tag_string()

Gets the tags as a tag string.

tag_string = person.skills.get_tag_string()
tag_string == 'Judo, "Kung Fu"'

1.5. Models 23

django-tagulous Documentation, Release 1.3.3

get_tag_list()

Returns a list of tag names.

tag_list = person.skills.get_tag_list()
tag_list == ['Judo', 'Kung Fu']

__str__(), __unicode__()

Same as get_tag_string

report = '%s' % person.skills

__eq__, __ne__

Compare the tags on this instance to a tag string, or an iterable of tags or tag names. Order does not matter, and case
sensitivity is determined by the options case_sensitive and force_lowercase.

if (
first.tags == second.tags
or first.tags == ['Judo', kung_fu_tag]
or first.tags != 'foo, bar'
or first.tags != second.tags.filter(name__istartswith='k')

):
...

__contains__

See if the tag (or string of a tag name) is in the tags. Case sensitivity is determined by the options case_sensitive and
force_lowercase.

if 'Judo' in person.skills and kung_fu_tag in person.skills:
candidates.append(person)

reload()

Discard any unsaved changes to the tags and load tags from the database

person.skills = 'judo'
person.save()
person.skills = 'karate'
person.skills.reload()
person.skills == 'judo'

24 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

save(force=False)

Commit any tag changes to the database.

If you are only changing the tags you can call this directly to reduce database operations.

Note: You do not need to call this if you are saving the instance; the manager listens to the instance’s save signals and
saves any changes to tags as part of that process.

In most circumstances you can ignore the force flag:

• The manager has a .changed flag which is set to False whenever the internal tag cache is loaded or saved. It
is set to True when the tags are changed without being saved.

• If force=False (default), this method will only update the database if the .changed flag is True - in other
words, the database will only be updated if there are changes to the internal cache since last load or save.

• If force=True, the .changed flag will be ignored, and the current tag status will be forced upon the database.
This can be useful in the rare cases where you have multiple references to the same database object, and want
the tags on this instance to override any changes other instances may have made.

For example:

person = Person.objects.create(name='Adam', skills='judo')
person.name = 'Bob'
person.skills = 'karate'
person.skills.save()
person.name == 'Adam'
person.skills == 'judo'

add(tag, tag, ...)

Based on the normal RelatedManager.add method, but has support for tag names.

Adds a list of tags or tag names directly to the instance - there is no need to save afterwards.

Note: This does not parse tag strings - you need to pass separate tags as either instances of the tag model, or as separate
strings.

Will call reload() first, so any unsaved changes to tags will be lost.

person.skills.add('Judo', kung_fu_tag)

1.5. Models 25

django-tagulous Documentation, Release 1.3.3

remove(tag, tag, ...)

Based on the normal RelatedManager.remove method, but has support for tag names.

Removes a list of tags or tag names directly from the instance - there is no need to save afterwards.

Note: This does not parse tag strings - you need to pass separate tags as either instances of the tag model, or as separate
strings.

Will call reload() first, so any unsaved changes to tags will be lost.

person.skills.remove('Judo', kung_fu_tag)

1.5.2 Tag Models

Tags are stored in tag models which subclass tagulous.models.TagModel, and use a tagu-
lous.models.TagModelManager. A tag model can either be generated automatically, or you can create a custom
model.

Tags in tag models can be protected from automatic deletion when they are not referred to. Initial tags must be loaded
using the initial_tags command.

Tag model classes

tagulous.models.TagModel

A TagModel subclass has the following fields and methods:

name

A CharField containing the name (string value) of the tag.

Must be unique.

slug

A unique SlugField, generated automatically from the name when first saved.

Slugs will support unicode if the TAGULOUS_SLUG_ALLOW_UNICODE setting is True. Empty slugs are not allowed;
they will default to underscore. Slug clashes are avoided by adding an integer to the end.

26 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

count

An IntegerField holding the number of times this tag is in use.

protected

A BooleanField indicating whether this tag should be protected from deletion when the count reaches 0.

It also has several methods primarily for internal use, but some may be useful:

get_related_objects()

Return a list of instances of other models which refer to this tag; see the API for more details

update_count()

In case you’re doing something weird which causes the count to get out of sync, call this to update the count, and delete
the tag if appropriate.

merge_tags(tags)

Merge the specified tags into this tag.

tags can be a queryset, list of tags or tag names, or a tag string.

tagulous.models.TagModelManager

A TagModelManager is the standard manager for a tagulous.models.TagModel; it is a subclass of the normal Django
model manager, but its queries return a tagulous.models.TagModelQuerySet instead.

It also provides the following additional methods:

filter_or_initial(...)

Calls the normal filter(...) method, but then adds on any initial tags which may be missing.

weight(min=1, max=6)

Annotates a weight field to the tags. This is a weighted count between the specified min and max, which default to
TAGULOUS_WEIGHT_MIN and TAGULOUS_WEIGHT_MAX (see Settings).

This can be used to generate tag clouds, for example.

1.5. Models 27

django-tagulous Documentation, Release 1.3.3

tagulous.models.TagModelQuerySet

This is returned by the tagulous.models.TagModelManager; it is a subclass of the normal Django QuerySet class, but
implements the same additional methods as the TagModelManager.

Custom Tag Models

A custom tag model should subclass tagulous.models.TagModel, so that Tagulous can find the fields and methods
it expects, and so it uses the appropriate tag model manager and queryset.

A custom tag model is a normal model in every other way, except it can have a TagMeta class to define default options
for the class.

There is an example which illustrates how to create a custom tag model.

If you want to use tag trees, you will need to subclass tagulous.models.TagTreeModel instead. The only difference
is that there will be extra fields on the model - see Tag Trees for more details.

TagMeta

The TagMeta class is a container for tag options, to be used when creating a custom tag model.

Set any Model Options as class properties. When the model is created by Python, the options will be available on the
tag model class and tag fields which use it as tag_options.

Tag fields will not be able to override these options, and SingleTagField fields will ignore max_count.

If tree is specified, it must be appropriate for the base class of the tag model, eg if tree=True the tag model must
subclass tagulous.models.TagTreeModel - but if it is not provided it will be set to the correct value.

TagMeta can be inherited, so it can be set on abstract models. Options in the TagMeta of a parent model can be
overridden by options in the TagMeta of a child model.

Example:

import tagulous
class MyTagModel(tagulous.models.TagModel):

class TagMeta:
initial = 'judo, karate'

Protected tags

The tag model keeps a count of how many times each tag is referenced. When the tag count reaches 0, the tag will be
deleted unless its protected field is True, or the protect_all option has been used.

Note: This only happens when the count is updated, ie when the tag is added or removed; tags can therefore be created
directly on the model with the default count of 0, ready to be assigned later.

28 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

Loading initial tags

Initial tags must be loaded using the initial_tags management command. You can either load all initial tags in your
site by not passing in any arguments, or specify an app, model or field to load:

python manage.py initial_tags [<app_name>[.<model_name>[.<field_name>]]]

• Tags which are new will be created

• Tags which have been deleted will be recreated

• Tags which exist will be untouched

1.5.3 Tag Trees

Tags can be nested using tag trees for detailed categorisation, with tags having parents, children and siblings.

Tags in tag trees denote parents using the forward slash character (/). For example, Animal/Mammal/Cat is a Cat
with a parent of Mammal and grandparent of Animal.

To use a slash in a tag name, escape it with a second slash; for example the tag name Animal/Vegetable can be
entered as Animal//Vegetable.

A custom tag tree model must be a subclass of tagulous.models.TagTreeModel instead of the normal tagu-
lous.models.TagModel; for automatically-generated tag models, this is managed by setting the tree field option to True.

Tag Tree Model Classes

tagulous.models.TagTreeModel

Because tree tag names are fully qualified (include all ancestors) and unique, there is no difference to normal tags in
how they are set or compared.

A TagTreeModel subclasses tagulous.models.TagModel; it inherits all the normal fields and methods, and adds the
following:

Note: Field values are computed and set automatically in the save() method - so don’t try to use them until the tag
has been saved.

parent

A ForeignKey to the parent tag. Tagulous sets this automatically when saving, creating missing ancestors as needed.

1.5. Models 29

django-tagulous Documentation, Release 1.3.3

children

The reverse relation manager for parent, eg mytag.children.all().

label

A CharField containing the name of the tag without its ancestors.

Example: a tag named Animal/Mammal/Cat has the label Cat

slug

A SlugField containing the slug for the tag label.

Example: a tag named Animal/Mammal/Cat has the slug cat

path

A TextField containing the path for this tag - this slug, plus all ancestor slugs, separated by the / character, suitable
for use in URLs. Tagulous sets this automatically when saving.

Example: a tag named Animal/Mammal/Cat has the path animal/mammal/cat

level

An IntegerField containing the level of this tag in the tree (starting from 1).

merge_tags(tags, children=False)

Merge the specified tags into this tag.

tags can be a queryset, list of tags or tag names, or a tag string.

If children=False, only the specified tags will be merged; tagged items will be reassigned to this tag, but if there
are child tags they will not be touched. If child tags do exist, although the merged tags’ counts will be 0, they will not
be cleared.

If children=True, child tags will be merged into children of this tag, retaining structure; eg merging Pet into Animal
will merge Pet/Mammal into Animal/Mammal, Pet/Mammal/Cat into Animal/Mammal/Cat etc. Tags will be created
if they don’t exist.

get_ancestors()

Returns a queryset of all ancestors, ordered by level.

30 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

get_descendants()

Returns a queryset of all descendants, ordered by level.

get_siblings()

Returns a queryset of all siblings, ordered by name.

This includes the node itself; if you don’t want it in the results, exclude it afterwards, eg:

siblings = node.get_siblings().exclude(pk=node.pk)

tagulous.models.TagTreeModelManager

A TagTreeModelManager is the standard manager for a tagulous.models.TagTreeModel; it is a sub-
class of tagulous.models.TagModelManager so provides those methods, but its queries return a tagu-
lous.models.TagTreeModelQuerySet instead.

tagulous.models.TagTreeModelQuerySet

This is returned by the tagulous.models.TagTreeModelManager; it is a subclass of tagulous.models.TagModelQuerySet
so provides those methods, but also:

with_ancestors()

Returns a new queryset containing the nodes from the calling queryset, plus their ancestor nodes.

with_descendants()

Returns a new queryset containing the nodes from the calling queryset, plus their descendant nodes.

with_siblings()

Returns a new queryset containing the nodes from the calling queryset, plus theirm sibling nodes.

Converting from to tree tags from normal tags

When converting from a normal tag model to a tag tree model, you will need to add extra fields. One of those (path)
is a unique field, which means extra steps are needed to build the migration.

These instructions will convert an existing TagModel to a TagTreeModel. Look through the code snippets and change
the app and model names as required:

1. Create a data migration to escape the tag names.

You can skip this step if you have been using slashes in normal tags and want them to be converted to nested tree
nodes.

Run manage.py makemigrations myapp --empty and add:

1.5. Models 31

django-tagulous Documentation, Release 1.3.3

def escape_tag_names(apps, schema_editor):
model = apps.get_model('myapp', 'Tagulous_MyModel_Tags')
for tag in model.objects.all():

tag.name = tag.name.replace('/', '//')
tag.save()

operations = RunPython(escape_tag_names)

2. Create a schema migration to change the model fields. Because paths are not allowed to be null, you need to add
the path field as a non-unique field, set some unique data on it (such as the object’s pk), and then change the
field to add back the unique constraint.

To do this reliably on all database types, see Migrations that add unique fields in the official Django documenta-
tion.

If you are only working with databases which support transactions, you can use a tagulous helper to add the
unique field:

1. When you create the migration, Django will prompt you for a default value for the unique path field; answer
with 'x' (do the same for the label field when asked).

Change the new migration to use the Tagulous helper to add the path field.

2. Add the unique field:

import tagulous.models.migrations
...

class Migration(migrations.Migration):
... rest of Migration as generated
operations = [

...
Leave other operations as they are, just replace AddField:

] + tagulous.models.migration.add_unique_field(
model_name='_tagulous_mymodel_tags',
name='path',
field=models.TextField(unique=True),
preserve_default=False,
set_fn=lambda obj: setattr(obj, 'path', str(obj.pk)),

) + [
...

]

Warning: Although add_unique_column and add_unique_field do work with non-
transactional databases, it is not without risk. See Database Migrations for more details.

3. We have changed the abstract base class of the tag model, but Django migrations have no native way to do this.
You will need to use the Tagulous helper operation ChangeModelBases to do it manually, otherwise future data
migrations will think it is a TagModel, not a TagTreeModel.

Modify the migration from step 2; if you followed the official Django documentation and have several migrations,
modify the last one. Add the ChangeModelBases to the end of your operations list, as the last operation:

import tagulous.models.migrations

(continues on next page)

32 Chapter 1. Contents

https://docs.djangoproject.com/en/dev/howto/writing-migrations/#migrations-that-add-unique-fields

django-tagulous Documentation, Release 1.3.3

(continued from previous page)

class Migration(migrations.Migration):
... rest of Migration as generated
operations = [

... rest of operations
tagulous.models.migrations.ChangeModelBases(

name='_tagulous_mymodel_tags',
bases=(tagulous.models.models.BaseTagTreeModel, models.Model),

)
]

4. Create another data migration to rebuild the tag model and set the paths:

def rebuild_tag_model(apps, schema_editor):
model = apps.get_model('myapp', 'Tagulous_MyModel_Tags')
model.objects.rebuild()

operations = RunPython(rebuild_tag_model)

If you skipped step 1, this will also create and set parent tags as necessary.

5. Run the migrations

You can see a working migration using steps 2 and 3 in the Tagulous tests, for Django migrations.

1.5.4 Tagged Models

Models which have tag fields are called tagged models. In most situations, all you need to do is add the tag field to the
model and Tagulous will do the rest.

Because Tagulous’s fields work by subclassing ForeignKey and ManyToManyField, there are some places in Django’s
models where you would expect to use tag strings but cannot - constructors and filtering, for example. Tagulous
therefore adds this functionality through the tagulous.models.TaggedModel base class for tagged models.

If TAGULOUS_ENHANCE_MODELS = True (which it is by default - see Settings), this base class will be applied auto-
matically, otherwise read on to Setting tagged base classes manually.

Note: Tagulous sets TaggedModel as the base class for your existing tagged model by listening for the
class_prepared signal, sent when a model has been constructed. If the model contains tag fields, Tagulous will
dynamically add TaggedModel to the model’s base classes and TaggedManager to the manager’s base classes, which
in turn adds TaggedQuerySet to the querysets the manager creates. It does this by calling the cast_class class
method on each of the base classes, which change the original classes in place.

This all happens seamlessly behind the scenes; the only thing you may notice is that the names of your manager and
queryset classes now have the prefix CastTagged to indicate that they have been automatically cast to their equivalents
for tagged models.

1.5. Models 33

https://github.com/radiac/django-tagulous/blob/master/tests/tagulous_tests_migration/django_migrations_expected/0003_tree.py

django-tagulous Documentation, Release 1.3.3

Tagged model classes

tagulous.models.TaggedModel

This is the base class for all tagged models. It changes the model constructor so that TagField values can be passed
as keywords.

tagulous.models.TaggedManager

The base class for managers of tagged models. It only exists to ensure querysets are subclasses of tagulous.
TaggedQuerySet.

tagulous.models.TaggedQuerySet

The base class for querysets on tagged models. It changes get, filter and exclude to work with string values, and
create and get_or_create to work with string and TagField values.

It also adds get_similar_objects() - see finding_similar_objects for usage.

See Querying using tag fields for more details.

Setting tagged base classes manually

However, if you want to avoid this automatic subclassing, you can set TAGULOUS_ENHANCE_MODELS = False and
manage this yourself:

The three tagged base classes each have a class method cast_class which can change existing classes so that they
become CastTagged subclasses of themselves; for example:

class MyModel(tagulous.TaggedModel):
name = models.CharField(max_length=255)
tags = tagulous.models.TagField()
objects = tagulous.models.TaggedManager.cast_class(MyModelManager)
other_manager = MyOtherManager

tagulous.models.TaggedManager.cast_class(MyModel.other_manager)

This can be useful when working with other third-party libraries which insist on you doing things a certain way.

Querying using tag fields

When querying a tagged model, remember that a SingleTagField is really a ForeignKey, and a TagField is really
a ManyToManyField. You can query using these relationships in conventional ways.

If you have correctly made your tagged model subclass tagulous.models.TaggedModel, you can also compare a tag field
to a tag string in get, filter and exclude:

qs = MyModel.objects.get(name="Bob", title="Mr", tags="red, blue, green")

When querying a tag field, case sensitivity will default to whatever the tag field option was. For example, if the title
tag field above was defined with case_sensitive=False, .filter(title='Mr') will match Mr, mr etc.

34 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

Note that when querying a TagField in this way, the returned queryset will include (or exclude) any object which
contains all the specified tags - but it may also have other tags. To only return objects which have the specified tags and
no others, use the __exact field lookup suffix:

Find all MyModel objects which have the tag 'red':
qs = MyModel.objects.filter(tags='red')
(will include those tagged 'red, blue' etc)

Find all MyModel objects which are only tagged 'red':
qs = MyModel.objects.filter(tags__exact='red')
(will not include those tagged 'red, blue')

This currently does not work across database relations; you will need to use the name field on the tag model for those:

Find
qs = MyRelatedModel.objects.filter(

foreign_model__tags__name__in=['red', 'blue', 'green'],
)

Because tag fields use standard database relationships, you can easily filter the tags by other fields in your model.

For example, if your model Record has a tags TagField and an owner foreign key to auth.User, to get a list of tags
which that user has used:

myobj.tags.tag_model.objects.filter(record__owner=user)

There is a filter_or_initial helper method on a TagModel’s manager and queryset, which will add initial tags to
your filtered queryset:

myobj.tags.tag_model.objects.filter_or_initial(record__owner=user)

The QuerySet on a tagged model provides the method get_similar_objects, which takes the instance and field
name to compare similarity by, and returns a queryset of similar objects from that tagged model, ordered by similarity:

myobj = MyModel.objects.first()
similar = MyModel.objects.get_similar_objects(myobj, 'tags')

There is a convenience wrapper on the related manager which detects the instance and field to compare by:

similar = myobj.tags.get_similar_objects()

Although less useful, there is a similar function for single tag fields, which finds all objects with the same tag:

similar = myobj.singletag.get_similar_objects()

The similar querysets will exclude the object being compared - in the above examples, myobjwill not be in the queryset.

1.5. Models 35

django-tagulous Documentation, Release 1.3.3

1.5.5 Database Migrations

Tagulous supports Django migrations.

Both SingleTagField and TagField work in schema and data migrations. Tagged models will be subclasses of
TaggedModel as normal (as long as TAGULOUS_ENHANCE_MODELS is True), and tag fields will work as normal. The
only difference is that tag models will be instances of BaseTagModel and BaseTagTreeModel rather than their normal
non-base versions - but this is just how migrations work, and it will makes no practical difference.

Adding unique columns

Migrating a model to a TagModel or TagTreeModel involves adding unique fields (slug and path for example),
which normally requires 3 separate migrations. To simplify this process, Tagulous provides the helper method
add_unique_field to add them in a single migration - see step 2 in Converting from to tree tags from normal tags
for examples of their use.

However, use these with care - should part of the function fail for some reason when using a non-transactional database,
it won’t be able to roll back and may be left in an unmigrateable state. It is therefore recommended that you either make
a backup of your database before using this function, or that you follow the steps in the official Django documentation
to perform the action in 3 separate migrations.

Limitations of Django migrations

Django migrations do not support changing the tag model’s base class - for example, changing a plain model to a
TagModel, or a TagModel to a TagTreeModel). Django migrations have no way to store or apply this change, so you
will need to use the Tagulous helper operation ChangeModelBases - see step 3 of Converting from to tree tags from
normal tags for more details, or the working example in 0003_tree.py.

Django migrations also cannot serialise lambda expressions, so the get_absolute_url argument is not available
during data migrations, neither when defined on a tag field, nor when in a tag model. If you need to call this in a data
migration, it is recommended that you embed the logic into your migration.

1.6 Forms

Normally tag fields will be used in a ModelForm; they will automatically use the correct form field and widget to render
tag fields with your selected autocomplete adaptor.

To save tag fields, just call the form.save() method as you would normally. However, because tagu-
lous.models.TagField is based on a ManyToManyField, if you call form.save(commit=False) you will need to
call form.m2m_save() after to save the tags.

See the ModelForms example for how this works in practice.

36 Chapter 1. Contents

https://docs.djangoproject.com/en/dev/howto/writing-migrations/#migrations-that-add-unique-fields
https://github.com/radiac/django-tagulous/blob/master/tests/tagulous_tests_migration/django_migrations_expected/0003_tree.py

django-tagulous Documentation, Release 1.3.3

1.6.1 Form field classes

You can also use Tagulous form fields outside model forms by using the tagulous.forms.SingleTagField and tagu-
lous.forms.TagField form fields - see the Forms without models example for how this works in practice.

Tag forms fields take standard Django core field arguments such as label and required.

tagulous.forms.SingleTagField

This field accepts two new arguments:

tag_options A TagOptions instance, containing form options (model options will be ignored).

autocomplete_tags An iterable of tags to be embedded for autocomplete. This can either be a queryset of tag
objects, or a list of tag objects or strings.

The clean method returns a single tag name string, or None if the value is empty.

tagulous.forms.TagField

This field accepts the same two new arguments as a SingleTagField:

tag_options A TagOptions instance, containing form options (model options will be ignored).

autocomplete_tags An iterable of tags to be embedded for autocomplete. This can either be a queryset of tag
objects, or a list of tag objects or strings.

The clean method returns a sorted list of unique tag names (a list of strings) - or an empty list if there are no tags.

tagulous.forms.TaggedInlineFormSet

In most cases Tagulous works with Django’s default inline model formsets, and you don’t need to do anything special.

However, there is a specific case where it doesn’t: when you create an inline formset for tagged models, with a tag as
their parent model - eg when you edit a tag and its corresponding instances of the tagged model. That is when you must
use the TaggedInlineFormSet class. For example:

class Person(models.Model):
name = models.CharField(max_length=255)
title = tagulous.models.SingleTagField(initial='Mr, Mrs')

PersonInline = forms.models.inlineformset_factory(
Person.title.tag_model,
Person,
formset=tagulous.forms.TaggedInlineFormSet,

)

This would allow you to generate a formset for all Person objects which use a specific title tag.

Tagulous will automatically apply this fix in the admin site, as long as the tag admin class is registered using tagulous.
admin.register.

Without the TaggedInlineFormSet class in this situation, the tag count will be incorrect when adding tagged model
instances, and editing will fail because the default formset will try to use the tag name as a primary key.

The TaggedInlineFormSet class will only perform actions under this specific relationship, so is safe to use in other
situations.

1.6. Forms 37

https://docs.djangoproject.com/en/dev/ref/forms/fields/#core-field-arguments

django-tagulous Documentation, Release 1.3.3

1.6.2 Filtering autocomplete tags

By default the tag field widget will autocomplete using all tags on the tag model. However, you will often only want to
use a subset of your tags - for example, just the initial tags, or tags which the current user has used, or tags which have
been used in conjunction with another field on your model.

Because model tag fields are normal Django relationships, you can filter embedded autocomplete tags by overriding
the form’s __init__ method. To filter an ajax autocomplete view, wrap tagulous.views.autocomplete in your
own view function which filters for you.

For examples of these approaches, see Filtering embedded autocomplete and Filtering an autocomplete view.

1.6.3 Autocomplete Adaptors

Tagulous uses a javascript file it calls an adaptor to apply your chosen autocomplete library to the Tagulous form field.

Only Select2 is included with Tagulous; if you want to use a different library, you will need to add it to your project’s
static files, and add the relative path under STATIC_URL to the appropriate TAGULOUS_ settings.

Tagulous includes the following adaptors:

Select2 (version 4)

The default adaptor, for Select2.

Path: tagulous/adaptor/select2-4.js

Autocomplete settings should be a dict:

defer If True, the tag field will not be initialised automatically; you will need to call Tagulous.select2(el) on it
from your own javascript. This is useful for fields which are used as templates to dynamically generate more.

For example, to use this adaptor with a django-dynamic-formset which uses a formTemplate, set {'defer':
True}, then configure the formset with:

added: function ($row) {
Tagulous.select2($row.find('input[data-tagulous]'));

}

Note that when used with inline formsets which raise the formset:added event (like in the Django admin site),
Tagulous will automatically try to register tag fields in new formsets if defer=False.

width This is the same as in Select2’s documentation, but the Tagulous default is resolve instead of off, for the
best chance of working without complication.

All other settings will be passed to the Select2 constructor.

1.6.4 Writing a custom autocomplete adaptor

Writing a custom adaptor should be fairly self-explanatory - take a look at the included adaptors to see how they work.
It’s mostly just a case of pulling data out of the HTML field, and fiddling with it a bit to pass it into the library’s
constructor.

Tagulous puts certain settings on the HTML field’s data- attribute:

data-tagulous Always true - used to identify a tagulous class to JavaScript

data-tag-type Set to single when a SingleTagField, otherwise not present.

38 Chapter 1. Contents

https://select2.github.io/
https://github.com/elo80ka/django-dynamic-formset

django-tagulous Documentation, Release 1.3.3

data-tag-list JSON-encoded list of tags.

data-tag-url URL to request tags

data-tag-options JSON-encoded dict of tag options

In addition to the dict from TagOptions containing the field’s Form Options, there will also be:

required A boolean indicating whether the form field is required or not

These settings can be used to initialise your autocomplete library of choice. You should initialise it using
data-tag-options’s autocomplete_settings for default values.

For consistency with Tagulous’s python parser, try to replace your autocomplete library’s parser with Tagulous’s
javascript parser.

If you write an adaptor which you think would make a good addition to this project, please do send it in or make a pull
request on github - see Contributing for more information.

1.7 Tag Options

Model options define how a tag model behaves. They can either be set in the model field arguments, or in the tag
model’s TagMeta class. Once defined, they are then stored in a TagOptions instance on the tag model, accessible at
MyTagModel.tag_options (and shared with tag model fields at MyTaggedModel.tags.tag_options).

Tagulous only lets you set options for a tag model in one place - if you use a custom model you must set options using
TagMeta, and if you share an auto-generated model between fields, only the first field can set options.

Form options are a subset of the model options, and are also used to control tag form fields, and are also stored in a
TagOptions instance. If the field is part of a ModelForm it will inherit options from the model, otherwise options can
be passed in the field arguments.

1.7.1 Model Options

The tag model options are:

initial

List of initial tags for the tag model. Must be loaded into the database with the management command initial_tags.

Value can be a tag string to be parsed, or an array of strings with one tag in each string.

To change initial tags, you can change the initial option and re-run the command initial_tags.

You should not find that you need to update initial regularly; if you do, it would be better to use the Tagulous admin
tools to add tags to the model directly.

If provided as a tag string, it will be parsed using spaces and commas, regardless of the space_delimiter option.

Default: ''

1.7. Tag Options 39

django-tagulous Documentation, Release 1.3.3

protect_initial

The protected state for any tags created by the initial argument - see Protected tags.

Default: True

protect_all

Whether all tags with count 0 should be protected from automatic deletion.

If false, will be decided by tag.protected - see Protected tags.

Default: False

case_sensitive

If True, tags will be case sensitive. For example, "django, Django" would be two separate tags.

If False, tags will be capitalised according to the first time they are used.

Note when using sqlite: substring matches on tag names, and matches on tag names with non-ASCII characters, will
never be case sensitive - see the databases django documentation for more information.

See also force_lowercase

Note: MySQL struggles to offer string case sensitivity at the database level - see the django documentation for more
details. Tagulous therefore offers no formal support for this option when running on MySQL - the relevant tests are
bypassed, and you should assume that case_sensitive is always False. Patches welcome.

Default: False

force_lowercase

Force all tags to lower case

Default: False

max_count

TagField only - this is not supported by SingleTagField.

Specifies the maximum number of tags allowed.

Set to 0 to have no limit.

If you are setting it to 1, consider using a SingleTagField instead.

Default: 0

40 Chapter 1. Contents

https://docs.djangoproject.com/en/dev/ref/databases/#substring-matching-and-case-sensitivity
https://docs.djangoproject.com/en/dev/ref/databases/#mysql-collation

django-tagulous Documentation, Release 1.3.3

space_delimiter

TagField only - this is not supported by SingleTagField.

If True, both commas and spaces can be used to separate tags. If False, only commas can be used to separate tags.

Default: True

tree

Field argument only - this cannot be set in TagMeta

If True, slashes in tag names will be used to denote children, eg grandparent/parent/child, and these relationships
can be traversed. See Tag Trees for more details.

If False, slashes in tag names will have no significance, and no tree properties or methods will be present on tag
objects.

Default: False

autocomplete_initial

If True, override all other autocomplete settings and use the tags defined in the initial argument for autocompletion,
embedded in the form field HTML.

For more advanced autocomplete filtering options (ie filter tags by user), see the example Filtering autocomplete by
related fields.

Default: False

autocomplete_view

Specify the view to use for autocomplete queries.

This should be a value which can be passed to Django’s reverse(), eg the name of the view.

If None, all tags will be embedded into the form field HTML as the data-autocomplete attribute.

If this is an invalid view, a ValueError will be raised.

Default: None

autocomplete_view_args

Optional args passed to the autocomplete_view.

Default: None

1.7. Tag Options 41

django-tagulous Documentation, Release 1.3.3

autocomplete_view_kwargs

Optional kwargs passed to the autocomplete_view.

Default: None

autocomplete_limit

Maximum number of tags to provide at once, when autocomplete_view is set.

If the autocomplete adaptor supports pages, this will be the number shown per page, otherwise any after this limit will
not be returned.

If 0, there will be no limit and all results will be returned

Default: 100

autocomplete_view_fulltext

Whether to perform a start of word match (__startswith) or full text match (__contains) in the autocomplete view.

Has no effect if not using autocomplete_view.

Default: False (start of word)

autocomplete_settings

Override the default TAGULOUS_AUTOCOMPLETE_SETTINGS.

For example, the select2 control defaults to use the same width as the form element it replaces; you can override this
by passing their width option (see their docs on appearance) as an autocomplete setting:

myfield = TagField(... autocomplete_settings={"width": "75%"})

Default: None

get_absolute_url

A shortcut for defining a get_absolute_url method on the tag model. Only used when defined in tag fields which
auto-generate models.

It is common to need to get a URL for a tag, so rather than converting your tag field to use a custom TagModel just to
implement a get_absolute_url method, you can pass this argument a callback function.

The callback function will be passed the tag object, and should return the URL for the tag. See the Tag URL example
for a simple lambda argument.

If not set, the method get_absolute_url will not be available and an AttributeError will be raised.

Note: Due to the way Django migrations freeze model fields, this attribute is not available during data migrations.
See Limitations of Django migrations for more information.

Default: None

42 Chapter 1. Contents

https://select2.org/appearance

django-tagulous Documentation, Release 1.3.3

verbose_name_singular, verbose_name_plural

When a tag model is auto-generated from a field, it is given a verbose_name based on the tagged model’s name and
the tag field’s name; the verbose_name_plural is the same, but with an added s at the end. This is primarily used
in the admin.

However, this will sometimes not make grammatical sense; these two arguments can be used to override the field name
component of the model name.

The verbose_name_singular will usually be used with a TagField - for example, the auto-generated
model for MyModel.tags will have the singular name My model tags; this can be corrected by setting
verbose_name_singular="tag" in the field definition.

The verbose_name_plural will usually be used with a SingleTagField - for example, the auto-generated
model for MyModel.category will have the plural name My model categorys; this can be corrected by setting
verbose_name_plural="categories" in the field definition.

If one or both of these are not set, Tagulous will try to find the field name from its verbose_name argument, falling
back to the field name.

Note: When Tagulous automatically generates verbose names, it intentionally performs no checks on how long they
will be. When Django attempts to create permissions for the model, if the generated verbose name is longer than 39
characters, it may raise a ValidationError. To resolve this, set verbose_name_singular to a string which is 38
characters or less.

1.7.2 Form Options

The following options are used by form fields:

• case_sensitive

• force_lowercase

• max_count

• tree

• autocomplete_limit

• autocomplete_settings

1.7.3 The TagOptions Class

The TagOptions class is a simple container for tag options. The options for a model field are available from the
tag_options property of unbound tagulous.models.SingleTagField or tagulous.models.TagField fields.

All options listed in Model Options are available directly on the object, except for to. It also provides two instance
methods:

items(with_defaults=True) Get a dict of all options

If with_defaults is true, any missing settings will be taken from the defaults in constants.OPTION_DEFAULTS.

form_items(with_defaults=True) Get a dict of just the options for a form field.

If with_defaults is true, any missing settings will be taken from the defaults in constants.OPTION_DEFAULTS.

Example:

1.7. Tag Options 43

django-tagulous Documentation, Release 1.3.3

initial_tags = MyModel.tags.tag_options.initial
if "force_lowercase" in MyModel.tags.tag_options.items():

...

TagOptions instances can be added together to create a new merged set of options; note though that this is a shallow
merge, ie the value of autocomplete_settings on the left will be replaced by the value on the right:

merged_options = TagOptions(
autocomplete_settings={'width': 'resolve'}

) + TagOptions(
autocomplete_settings={'allowClear': True}

)
merged_options.autocomplete_settings == {'allowClear': True}

In the same way, setting autocomplete_settings on the field will replace any default value.

1.8 Views and Templates

1.8.1 Form templates

To render Tagulous fields in forms outside the admin site, add {{ form.media }} to your template to include the
JavaScript and CSS resources; for example:

{% block content %}
{{ form.media }}
{{ form }}

{% endblock %}

For an example of adding the JavaScript and CSS separately, see the example project templates

1.8.2 Autocomplete views

Although Tagulous doesn’t need any views by default, it does provide generic views in tagulous/views.py to support
AJAX autocomplete requests.

response = autocomplete(request, tag_model) This takes the request object from the dispatcher, and a ref-
erence to the tag model which this is autocompleting.

You can also pass in a QuerySet of the tag model, instead of the tag model itself, in order to filter the tags which
will be returned.

It returns an HttpResponse with content type application/json. The response content is a JSON-encoded
object with one key, results, which is a list of tags.

response = autocomplete_login(request, tag_model) Same as autocomplete, except is decorated with
Django auth’s login_required.

These views look for two GET parameters:

q A query string to filter results by - used to match against the start of the string.

Note: if using a sqlite database, matches on a case sensitive tag model may not be case sensitive - see the
case_sensitive option for more details.

44 Chapter 1. Contents

https://github.com/radiac/django-tagulous/tree/develop/example/example/templates
https://github.com/radiac/django-tagulous/blob/master/tagulous/views.py

django-tagulous Documentation, Release 1.3.3

p The page number to return, if autocomplete_limit is set on the tag model.

Default: 1

For an example, see the Autocomplete AJAX Views example.

1.8.3 Tag clouds

Tag clouds are a common way to display tags. Rather than have a template tag with templates and options for every
eventuality, Tagulous simply offers a weight() method on tag querysets, which adds a weight annotation to tag objects:

myapp/view.py
def tag_cloud(request):

...
tags = MyModel.tags.tag_model.objects.weight()
...

The weight value will be a number between TAGULOUS_WEIGHT_MIN and TAGULOUS_WEIGHT_MAX (see Settings),
although these can be overridden by passing arguments to weight() for new min and/or max values, eg:

tags = TagModel.objects.weight(min=2, max=4)

You can then render the tag cloud in your template as any other queryset, with complete control over how they are
displayed:

{% if tags %}
<h2>Tags</h2>
<p>
{% for tag in tags %}

{{ tag.name }}

{% endfor %}

{% endif %}

In that example, you would then define CSS classes for tag_1 to tag_6, which set the appropriate font styles.

If you wanted to insert the tag cloud on every page, it would be easy to wrap up in a custom template tag:

myapp/templatetags/myapp_tagcloud.py
from django import template
from myapp import models

register = template.Library()
@register.inclusion_tag('myapp/include/tagcloud.html')
def show_results(poll):

tags = models.MyModel.tags.tag_model.objects.weight()
return {'tags': tags}

myapp/templates/tagcloud.html - see template example above

1.8. Views and Templates 45

django-tagulous Documentation, Release 1.3.3

1.9 Admin

1.9.1 Tag fields in ModelAdmin

To support TagField and SingleTagField fields in the admin, you need to register the Model and ModelAdmin using
Tagulous’s register() function, instead of the standard one:

import tagulous.admin
class MyAdmin(admin.ModelAdmin):

list_display = ['name', 'tags']
tagulous.admin.register(MyModel, MyAdmin)

This will make a few changes to MyAdmin to add tag field support (detailed below), and then register it with the default
admin site using the standard site.register() call.

As with the normal registration call, the admin class is optional:

tagulous.admin.register(myModel)

You can also pass a custom admin site into the register() function:

These two lines are equivalent:
tagulous.admin.register(myModel, MyAdmin)
tagulous.admin.register(myModel, MyAdmin, site=admin.site)

The changes Tagulous’s register() function makes to the ModelAdmin are:

• Changes your ModelAdmin to subclass TaggedAdmin

• Checks list_display for any tag fields, and adds functions to the ModelAdmin to display the tag string (unless
an attribute with that name already exists)

• Switches an inline class to a TaggedInlineFormSet when necessary

Note:

• You can only provide the Tagulous register() function with one model.

• The admin class will be modified; bear that in mind if registering it with multiple admin sites. In that case, you
may want to enhance the class manually, as described below.

1.9.2 Manually enhancing your ModelAdmin

The tagulous.admin.register function is the short way to enhance your admin classes. If for some reason you
can’t use it (eg another library which has its own register function, or you’re registering it with more than one admin
site), you can do what it does manually:

1. Change your admin class to subclass tagulous.admin.TaggedModelAdmin.

This disables Django’s green button to add a related field, which is incompatible with Tagulous.

2. Call tagulous.admin.enhance(model_class, admin_class).

This finds the tag fields on the model class, and adds support for them to list_display.

3. Register the admin class as normal

For example:

46 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

import tagulous
class MyAdmin(tagulous.admin.TaggedModelAdmin):

list_display = ['name', 'tags']
tagulous.admin.enhance(MyModel, MyAdmin)
admin.site.register(MyModel, MyAdmin)

1.9.3 Autocomplete settings

The admin site can use different autocomplete settings to the public site by changing the settings
TAGULOUS_ADMIN_AUTOCOMPLETE_JS and TAGULOUS_ADMIN_AUTOCOMPLETE_CSS. You may want to do this
to avoid jQuery being loaded more than once, for example - assuming the version in Django’s admin site is compatible
with the autocomplete library of your choice.

See Settings for more information.

Because the select2 control defaults to use the same width as the form element it replaces, you may find this
a bit too small in some versions of the Django admin. You could override this with autocomplete_settings,
but that will change non-admin controls too, so the best option would be to add a custom stylesheet to
TAGULOUS_ADMIN_AUTOCOMPLETE_CSS with a rule such as:

.select2 {
width: 75% !important;

}

1.9.4 Managing the tag model

Tagulous provides additional tag-related functionality for tag models, such as the ability to merge tags. You can use
Tagulous’s register function to do this for you - just pass it the tag field:

tagulous.admin.register(MyModel.tags)

You can also specify the tag model directly:

tagulous.admin.register(MyModel.tags.tag_model)
tagulous.admin.register(MyCustomTagModel)

If you have a custom tag model and want to extend the admin class for extra fields on your custom model, you can
subclass the TagModelAdmin class to get the extra tag management functionality:

class MyModelTagsAdmin(tagulous.admin.TagModelAdmin):
list_display = ['name', 'count', 'protected', 'my_extra_field']

admin.site.register(MyCustomTagModel, MyModelTagsAdmin)

When overriding options, you should base them on the options in the default TagModelAdmin:

list_display = ['name', 'count', 'protected']
list_filter = ['protected']
exclude = ['count']
actions = ['merge_tags']

The TagTreeModelAdmin also excludes the path field.

Remember that the relationship between your entries and tags are standard ForeignKey or ManyToMany relationships,
so deletion propagation will work as it would normally.

1.9. Admin 47

django-tagulous Documentation, Release 1.3.3

1.10 Changelog

Tagulous follows semantic versioning in the format BREAKING.FEATURE.BUG:

• BREAKING will be marked with links to the details and upgrade instructions in Upgrading.

• FEATURE and BUG releases will be safe to install without reading the upgrade notes.

Changes for upcoming releases will be listed without a release date - these are available by installing the develop branch
from github.

1.10.1 1.3.3, 2021-12-25

Features:

• Add Django 4.0 support

Bugfix:

• Slug uniqueness now works when there are more than 11 collisions (#152)

1.10.2 1.3.2, 2021-12-23

Changes:

• Remove tag lookup from model getstate to improve pickling performance (#143)

• Manager and QuerySet cast classes are now placed in the module of the original class so they can be imported
and found by serializers and picklers

• Cast class names prefixes changed from CastTagged to TagulousCastTagged to further reduce risk of clashes

• Class casting detects and reuses classes which have already been cast

Bugfix:

• QuerySets can be pickled (#142)

1.10.3 1.3.1, 2021-12-21

Changes:

• Switch to pytest and enforce linting

Bugfix:

• Fix _filter_or_exclude exception missed by tests (#144, #149)

Thanks to:

• nschlemm for the ``_filter_or_exclude” fix (#144, #149)

48 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

1.10.4 1.3.0, 2021-09-07

Features:

• Add similarly_tagged to tagged model querysets, and get_similar_objects to instantiated tag fields
(#115)

• New DRF serializer to serialize tags as strings (#111)

• Initial TagField values passed on Form(initial=...) can now be a string, list or tuple of strings or tags, or
queryset (#107)

• Add system check for settings.SERIALIZATION_MODULES (#101)

Bugfix:

• Fix incorrect arguments for the TagField’s RelatedManager.set

• Upgrade select2 to fix composed characters (#138)

• Fix select2 input where quotes in quoted tags could be escaped

• The select2 control is applied when the formset:added event adds a tag field (#97)

• Fix edge case circular import (#124)

Thanks to:

• valentijnscholten for the form initial= solution (#107)

1.10.5 1.2.1, 2021-08-31

Bugfix:

• Fix issue with update_or_create (#135)

1.10.6 1.2.0, 2021-08-25

Upgrade notes: Upgrading from 1.1.0

Features:

• Django 3.2 support

• Option autocomplete_view_fulltext for full text search in autocomplete view (#102)

Changes:

• Slugification now uses standard Django for unicode for consistency

• Add autocomplete_view_args and autocomplete_view_kwargs options (#119, #120)

• Documentation updates (#105, #113, #131)

• Fix division by zero issue in weight() (#102)

Bugfix:

• Fix issue where the Select2 adaptor for SingleTagField didn’t provide an empty value, which meant it would look
like it had defaulted to a value which wasn’t set. (#116)

• Fix issue where the Select2 adaptor didn’t correctly handle the required attribute, which meant browser field
validation would fail silently. (#116)

• Fix dark mode support in Django admin (#125)

1.10. Changelog 49

django-tagulous Documentation, Release 1.3.3

• Fix collapsed select2 in Django admin (#123)

• Fix duplicate migration issue (#93)

• Tagged models can now be pickled (#109)

Thanks to:

• BoPeng for the autocomplete_view_args config options

• valentijnscholten for the select2 doc fix

• Jens Diemer (jedie) for the readme update

• dany-nonstop for autocomplete_view_fulltext and weight division issue

• poolpoolpoolpool for form.media docs (#131)

1.10.7 1.1.0, 2020-12-06

Feature:

• Add Django 3.0 and 3.1 support (#85)

Changes:

• Drops support for Python 2 and 3.5

• Drops support for Django 1.11 and earlier

• Drops support for South migrations

Bugfix:

• Resolves ManyToManyRel issue sometimes seen in loaddata (#110)

Thanks to:

• Diego Ubirajara (dubirajara) for FieldDoesNotExist fix for Django 3.1

• Andrew O’Brien (marxide) for admin.helpers fix for Django 3.1

1.10.8 1.0.0, 2020-10-08

Upgrade notes: Upgrading from 0.14.1

Feature:

• Added adaptor for Select2 v4 and set as default for Django 2.2+ (#11, #12, #90)

• Support full unicode slugs with new TAGULOUS_SLUG_ALLOW_UNICODE setting (#22)

Changes:

• Drops support for Django 1.8 and earlier

Bugfix:

• Tag fields work with abstract and concrete inheritance (#8)

• Ensure weighted values are integers not floats (#69, #70)

• The admin site in Django 2.2+ now uses the Django vendored versions of jQuery and select2 (#76)

• Fix support for single character tags in trees (#82)

• Fix documentation for adding registering tagged models in admin (#83)

50 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

• Fix division by zero in weight() (#59, #61)

• Fix support for capitalised table name in PostgreSQL (#60, #61)

• Tag fields are stripped before parsing, preventing whitespace tags in SingleTagFields (#29)

• Fix documentation for quickstart (#41)

• Fix prefetch_related() on tag fields (#42)

• Correctly raise an IntegrityError when saving a tree tag without a name (#50)

Internal:

• Signals have been refactored to global handlers (instead of multiple independent handlers bound to descriptors)

• Code linting improved; project now uses black and isort, and flake8 pases

Thanks to:

• Khoa Pham (phamk) for prefetch_related() fix (#42, #87)

• Erik Van Kelst (4levels) for division by zero and capitalised table fixes (#60, #61, #62)

• hagsteel for weighted values fix (#69, #70)

• Michael Röttger (mcrot) for single character tag fix (#81, #82)

• Frank Lanitz (frlan) for admin documentation fix (#83)

1.10.9 0.14.1, 2019-09-04

Upgrade notes: Upgrading from 0.14.0

Feature:

• Add Django 2.2 support (closes #71)

• Upgrade example project to Django 2.2 on Python 3.7

Bugfix:

• Correct issue with multiple databases (#72)

Thanks to:

• Dmitry Ivanchenko (ivanchenkodmitry) for multiple database fix (#72)

1.10.10 0.14.0, 2019-02-24

Feature:

• Add Django 2.0 support (fixes #48, #65)

• Add Django 2.1 support (fixes #56, #58)

Bugfix:

• Fix example project (fixes #64)

Thanks to:

• Diego Ubirajara (dubirajara) for Widget.render() fix (#58)

1.10. Changelog 51

django-tagulous Documentation, Release 1.3.3

1.10.11 0.13.2, 2018-05-28

Feature:

• Tag fields now support the argument to_base=MyTagModelBase

1.10.12 0.13.1, 2018-05-19

Upgrade notes: Upgrading from 0.13.0

Bugfix:

• TagField(null=...) now raises a warning about the TagField, rather than the parent ManyToManyField.

Changes:

• Reduce support for Python 3.3

1.10.13 0.13.0, 2018-04-30

Upgrade notes: Upgrading from 0.12.0

Feature:

• Add Django 1.11 support (fixes #28)

Changes:

• Reduce support for Django 1.4 and Python 3.2

• Remove deprecated TagField manager’s __len__ (#10, fixes #9)

Bugfix:

• Fix failed search in select2 v3 widget when pasting multiple tags (fixes #26)

• Fix potential race condition when creating new tags (#31)

• Temporarily disabled some migration tests which only failed under Python 2.7 with Django 1.9+ due to logic
issues in the tests.

• Fix deserialization exception for model with ManyToOneRel (fixes #14)

Thanks to:

• Martín R. Guerrero (slackmart) for removing __len__ method (#9, #10)

• Mark London for select2 v3 widget fix when pasting tags (#26)

• Peter Baumgartner (ipmb) for fixing race condition (#31)

• Raniere Silva (rgaics) for fixing deserialization exeption (#14, #45)

52 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

1.10.14 0.12.0, 2017-02-26

Upgrade notes: Upgrading from 0.11.1

Feature:

• Add Django 1.10 support (fixes #18, #20)

Bugfix:

• Remove unique=True from tag tree models’ path field (fixes #1)

• Implement slug field truncation (fixes #3)

• Correct MySQL slug clash detection in tag model save

• Correct .weight(..) to always return floored integers instead of decimals

• Correct max length calculation when adding and removing a value through assignment

• TagDescriptor now has a through attribute to match ManyToManyDescriptor

Deprecates:

• TagField manager’s __len__ method is now deprecated and will be removed in 0.13

Thanks to:

• Pamela McA’Nulty (PamelaM) for MySQL fixes (#1)

• Mary (minidietcoke) for max count fix (#16)

• James Pic (jpic) for documentation corrections (#13)

• Robert Erb (rerb) at AASHE (http://www.aashe.org/) for Django 1.10 support (#18, #20)

• Gaël Utard (gutard) for tag descriptor through fix (#19)

1.10.15 0.11.1, 2015-10-05

Internal:

• Fix package configuration in setup.py

1.10.16 0.11.0, 2015-10-04

Feature:

• Add support for Python 3.2 to 3.5

Internal:

• Change tagulous.models.initial.field_initialise_tags and model_initialise_tags to take a file
handle as report.

1.10. Changelog 53

http://www.aashe.org/

django-tagulous Documentation, Release 1.3.3

1.10.17 0.10.0, 2015-09-28

Upgrade notes: Upgrading from 0.9.0

Feature:

• Add fields level and label to tagulous.models.TagTreeModel (were properties)

• Add TagTreeModel.get_siblings()

• Add tagulous.models.TagTreeModelQuerySet methods with_ancestors(), with_descendants() and
with_siblings()

• Add space_delimiter tag option to disable space as a delimiter

• Tagulous available from pypi as django-tagulous

• TagModel.merge_tags can now accept a tag string

• TagTreeModel.merge_tags can now merge recursively with new argument children=True

• Support for recursively merging tree tags in admin site

Internal:

• Add support for Django 1.9a1

• TagTreeModel.tag_options.tree will now always be True

• JavaScript parseTags arguments have changed

• Added example project to github repository

Bugfix:

• TagRelatedManager instances can be compared to each other

• Admin inlines now correctly suppress popup buttons

• Select2 adaptor correctly parses ajax response

• TagMeta raises an exception if tree is set

• Default help text no longer changes for tagulous.models.SingleTagField

1.10.18 0.9.0, 2015-09-14

Upgrade notes: Upgrading from 0.8.0

Internal:

• Add support for Django 1.7 and 1.8

Removed:

• tagulous.admin.tag_model has been removed

Bugfix:

• Using a tag field with a non-tag model raises exception

54 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

1.10.19 0.8.0, 2015-08-22

Upgrade notes: Upgrading from 0.7.0 or earlier

Feature:

• Tag cloud support

• Improved admin.register

• Added tag-aware serializers

Deprecated:

• tagulous.admin.tag_model will be removed in the next version

Bugfix:

• Setting tag options twice raises exception

• Tagged inline formsets work correctly

Internal:

• South migration support improved

• Tests moved to top level, tox support added

• Many small code improvements and bug fixes

1.10.20 0.7.0, 2015-07-01

Feature:

• Added tree support

1.10.21 0.6.0, 2015-05-11

Feature:

• Initial public preview

1.11 Upgrading

This document details breaking changes between versions, with any necessary steps to safely upgrade.

For an overview of what has changed between versions, see the Changelog.

1.11.1 Instructions

Tagulous follows semantic versioning in the format BREAKING.FEATURE.BUG:

• Read the upgrade notes for a BREAKING release to see if you need to take further action when upgrading.

• FEATURE and BUG releases will be safe to install without reading the upgrade notes.

1. Check which version of Tagulous you are upgrading from:

1.11. Upgrading 55

django-tagulous Documentation, Release 1.3.3

python
>>> import tagulous
>>> tagulous.__version__

2. Upgrade the Tagulous package:

pip install --upgrade django-tagulous

3. Scroll down to the earliest instructions relevant to your version, and follow them up to the latest version.

Upgrading from 1.1.0

Slugify behaviour

In Tagulous 1.2.0 the slugify logic has been replaced with Django’s now all supported Django versions support the
allow_unicode slugify option.

If unicode tag slugs are not enabled with TAGULOUS_SLUG_ALLOW_UNICODE setting, Django’s implementation of uni-
code to ASCII does not support logographic characters, so these will be stripped as per Django’s standard slugify()
output, rather than Tagulous’ old behaviour of replacing them with underscore characters. This can now lead to empty
slugs, which will now default to a single underscore.

As a result of this change, the optional dependency unidecode and its corresponding extra installation requirements
[i18n] have been removed.

Upgrading from 0.14.1

Django and Python support

Tagulous 0.14.1 was the last version to support Django 1.10 and earlier. Tagulous 1.0.0 requires Django 1.11 or later,
and Python 2.7 or 3.5 or later.

Autocomplete upgrade

Tagulous 1.0.0 changes the default JavaScript adaptor to use select2 v4. This may necessitate some styling changes on
your user-facing pages if you have overridden the default styles.

Single tag behaviour

Tagulous 1.0.0 no longer allows whitespace tags in SingleTagField.

56 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

Upgrading from 0.14.0

Tagulous 0.14.0 was the last version to officially support Django 1.10 or earlier.

Upgrading from 0.13.0

1. Setting null in a model TagField has raised a warning in the parent ManyToManyField since Django 1.9. The
warning now correctly blames a TagField instead. The null argument in a model TagField is deprecated and
has no effect, so should not be used.

2. Version 0.13.1 reduces support for Python 3.3. No known breaking changes have been introduced, but this
version of Python will no longer be tested against due to lack of support in third party tools.

Upgrading from 0.12.0

1. Auto-generated tag models have been renamed.

Django 1.11 introduced a rule that models cannot start with an underscore. Prior to this, Tagulous auto-generated
tag models started _Tagulous_, to indicate they are auto-generated. From now on, they will start Tagulous_.

Django migrations should detect this model name change:

./manage.py makemigrations
Did you rename the myapp._Tagulous_MyModel model to Tagulous_MyModel? [y/N]

Answer y for all Tagulous auto-generated models, and migrate:

./manage.py migrate

Troubleshooting:

• If you do not see the rename prompt when running makemigrations, you will need to edit
the migration manually - see RenameModel <https://docs.djangoproject.com/en/1.11/ref/migration-
operations/#renamemodel> in the Django documentation for more details.

• If any AlterField changes to the SingleTagField or TagField definitions are included in this
set of migrations, the new tag model’s name will not be correctly detected and you will see the er-
rors Related model ... cannot be resolved or AttributeError: 'TagField' object has
no attribute 'm2m_reverse_field_name'. To resolve these, manually change the to parameter in
your AlterField’s tag field definition from myapp._Tagulous_... to myapp.Tagulous_....

• If you see an error Renaming the table while in a transaction is not supported because
it would break referential integrity, add atomic = False to your migration class.

2. Version 0.13.0 reduces support for Django 1.4 and Python 3.2. No known breaking changes have been introduced,
but these versions of Django and Python will no longer be tested against due to lack of support in third party
tools.

3. The TagField manager’s __len__ has now been removed, following its deprecation in 0.12.0. If you are cur-
rently using len(instance.tagfield) then you should switch to using instance.tagfield.count() in-
stead (see upgrade instructions).

1.11. Upgrading 57

django-tagulous Documentation, Release 1.3.3

Upgrading from 0.11.1

1. Starting with version 0.12.0, Tagulous no longer enforces uniqueness for tree path fields. This means that Django
will detect a change to your models, and warn you that your migrations are out of sync. It is safe for you to create
and apply a standard migration with:

./manage.py makemigrations

./manage.py migrate

This change is to avoid MySQL (and possibly other databases) from the errror "BLOB/TEXT column 'path'
used in key specification without a key length" - see https://github.com/radiac/django-tagulous/
issues/1 for discussion.

2. Version 0.12.0 deprecates the model tag manager’s __len__ method in preparation for merging https://github.
com/radiac/django-tagulous/pull/10 to resolve https://github.com/radiac/django-tagulous/issues/9.

If you are currently using len(instance.tagfield) then you should switch to using instance.tagfield.count() instead.

Upgrading from 0.9.0

1. Starting with version 0.10.0, Tagulous is available on pypi. You can continue to run the development version
direct from github, but if you would prefer to use stable releases you can reinstall:

pip uninstall django-tagulous
pip install django-tagulous

2. Version 0.10.0 adds label and level fields to the TagTreeModel base class (they were previously properties).
This means that each of your tag tree models will need a schema and data migration.

The schema migration will require a default value for the label; enter any valid string, eg '.'

The data migration will need to call mytagtreemodel.objects.rebuild() to set the correct values for label
and level.

You will need to create and apply these migrations to each of your tag tree models

Django migrations:

python manage.py makemigrations myapp
python manage.py migrate myapp
python manage.py makemigrations myapp --empty
Add data migration operation below
python manage.py migrate myapp

Your Django data migration should include:

def rebuild_tree(apps, schema_editor):
For an auto-generated tag tree model:
model = apps.get_model('myapp', '_Tagulous_MyModel_tagtreefield')

For a custom tag tree model:
#model = apps.get_model('myapp', 'MyTagTreeModel')

model.objects.rebuild()

class Migration(migrations.Migration):
(continues on next page)

58 Chapter 1. Contents

https://github.com/radiac/django-tagulous/issues/1
https://github.com/radiac/django-tagulous/issues/1
https://github.com/radiac/django-tagulous/pull/10
https://github.com/radiac/django-tagulous/pull/10
https://github.com/radiac/django-tagulous/issues/9

django-tagulous Documentation, Release 1.3.3

(continued from previous page)

... rest of Migration as generated
operations = [

migrations.RunPython(rebuild_tree)
]

South migrations:

python manage.py schemamigration --auto myapp
python manage.py migrate myapp
python manage.py datamigration myapp upgrade_trees
Add data migration function below
python manage.py migrate myapp

Your South data migration function should be:

def forwards(self, orm):
For an auto-generated tag tree model:
model = orm['myapp._Tagulous_MyModel_tagtreefield'].objects.rebuild()

For a custom tag tree model:
#model = orm['myapp.MyTagTreeModel'].objects.rebuild()

3. Since version 0.10.0 tree cannot be set in TagMeta; custom tag models must get their tree status from their base
class.

4. In version 0.10.0, TagOptions.field_items was renamed to TagOptions.form_items, and constants.
FIELD_OPTIONS was renamed to constants.FORM_OPTIONS. These were internal, so should not affect your
code.

5. The tag parsers now accept a new argument to control whether space is used as a delimiter or not. These are
internal, so should not affect your code, unless you have written a custom adaptor.

Upgrading from 0.8.0

1. Since 0.9.0, SingleTagField and TagField raise an exception if the tag model isn’t a subclass of TagModel.

2. The documentation for tagulous.models.migrations.add_unique_column has been clarified to illustrate
the risk of using it with a non-transactional database. If you use this in your migrations, read the documentation
to be sure you understand the problem involved.

Upgrading from 0.7.0 or earlier

1. tagulous.admin.tag_modelwas deprecated in 0.8.0 and removed in 0.9.0; use tagulous.admin.register
instead:

tagulous.admin.tag_model(MyModel.tags)
tagulous.admin.tag_model(MyModel.tags, my_admin_site)
becomes:
tagulous.admin.register(MyModel.tags)
tagulous.admin.register(MyModel.tags, site=my_admin_site)

2. Since 0.8.0, a ValueError exception is raised if a tag model field definition specifies both a tag model and tag
options.

1.11. Upgrading 59

django-tagulous Documentation, Release 1.3.3

For custom tag models, tag options must be set by adding a class TagMeta to your model. You can no longer
set tag options in the tag field.

Where an auto-generated tag model is shared with another tag field, the first tag field must set all tag options.

3. Any existing South migrations with SingleTagField or TagField definitions which automatically generate
their tag models will need to be manually modified in the Migration.models definition to have the attribute
'_set_tag_meta': 'True'. For example, the line:

'labels': ('tagulous.models.fields.TagField', [], {'force_lowercase': 'True', 'to':␣
→˓u"orm['myapp._Tagulous_MyModel_labels']", 'blank': 'True'}),

becomes:

'labels': ('tagulous.models.fields.TagField', [], {'force_lowercase': 'True', 'to':␣
→˓u"orm['myapp._Tagulous_MyModel_labels']", 'blank': 'True', '_set_tag_meta': 'True
→˓'}),

Any db.add_column calls will need to be changed too:

db.add_column(u'myapp_mymodel', 'singletag',
self.gf('tagulous.models.fields.SingleTagField')(null=True, ...),
...)

becomes:

db.add_column(u'myapp_mymodel', 'singletag',
self.gf('tagulous.models.fields.SingleTagField')(_set_tag_meta=True,␣

→˓null=True, ...),
...)

This will use the keyword tag options to update the tag model’s objects, rather than raising the new ValueError.

1.12 Contributing

Contributions are welcome, preferably via pull request. Check the github issues to see what needs work. Tagulous
aims to be a comprehensive tagging solution, but try to keep new features from having a significant impact on people
who won’t use them (eg tree support is optional).

When submitting UI changes, please aim to support the latest versions of Chrome, Firefox and Internet Explorer through
progressive enhancement - users of old browsers must still be able to tag things, even if they don’t get all the bells and
whistles.

1.12.1 Installing

The easiest way to work on Tagulous is to fork the project on github, then install it to a virtualenv:

virtualenv django-tagulous
cd django-tagulous
source bin/activate
pip install -e git+git@github.com:USERNAME/django-tagulous.git#egg=django-tagulous
pip install -r src/django-tagulous/requirements.test.txt

60 Chapter 1. Contents

django-tagulous Documentation, Release 1.3.3

(replacing USERNAME with your username).

This will install the development dependencies too, and you’ll find the tagulous source ready for you to work on in the
src folder of your virtualenv.

1.12.2 Testing

It is greatly appreciated when contributions come with unit tests.

Pytest is the test runner of choice:

pytest
pytest tests/test_file.py
pytest tests/test_file::TestClass::test_method

Use tox to run them on one or more supported versions:

tox [-e py39-django3.2]

To use a different database (mysql, postgres etc) use the environment variables DATABASE_ENGINE, DATABASE_NAME,
DATABASE_USER, DATABASE_PASSWORD, DATABASE_HOST and DATABASE_PORT, eg:

DATABASE_ENGINE=pgsql DATABASE_NAME=tagulous_test [...] tox

Most Tagulous python modules have corresponding test modules, with test classes which subclass tests.lib.
TagTestManager. They use test apps defined under the tests dir where required.

Run the javascript tests using Jasmine:

pip install jasmine
cd tests
jasmine
open http://127.0.0.1:8888/ in your browser

Javascript tests are defined in tests/spec/javascripts/*.spec.js.

1.12.3 Code overview

Tag model fields start in tagulous/models/fields.py; when they are added to models, the models call the field’s
contribute_to_class method, which adds the descriptors in tagulous/models/descriptors.py onto the model in
their place. These descriptors act as getters and setters, channeling data to and from the managers in tagu-
lous/models/managers.py.

Models which have tag fields are called tagged models. For tags to be fully supported in constructors, managers and
querysets, those classes need to use the classes defined in tagulous/models/tagged.py as base classes. That file contains
a class_prepared signal listener which tries to dynamically change the base classes of any models which contain tag
fields.

Model fields take their arguments and store them in a TagOptions instance, defined in tagulous/models/options.py.
Any initial tags in the options can be loaded into the database using the functions in tagulous/models/initial.py,
which is the same code the initial_tags management command uses.

When a ModelForm is created for a model with a tag field, the model field’s formfield method is called. This creates
a tag form field, defined in tagulous/forms.py, which is passed the TagOptions from the model. A tag form field can
also be created directly on a plain form. Tag form fields in turn uses tag widgets (also in tagulous/forms.py) to render
the field to HTML with the data from TagOptions.

1.12. Contributing 61

https://github.com/radiac/django-tagulous/blob/master/tagulous/models/fields.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/models/descriptors.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/models/managers.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/models/managers.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/models/tagged.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/models/options.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/models/initial.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/forms.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/forms.py

django-tagulous Documentation, Release 1.3.3

Tag strings are parsed and rendered (tags joined back to a tag string) by the functions in tagulous/utils.py.

Everything for enhancing the admin site with support for tag fields is in tagulous/admin.py. It is in two sections;
registration (which adds tag field functionality to a normal ModelAdmin, and replaces the widgets with tag widgets)
and tag model admin (for managing tag models).

62 Chapter 1. Contents

https://github.com/radiac/django-tagulous/blob/master/tagulous/utils.py
https://github.com/radiac/django-tagulous/blob/master/tagulous/admin.py

	Contents
	Introduction
	Features
	Quickstart
	Glossary
	Comparison with other tagging libraries
	Real relations
	Separate tag models
	More customisable
	Built-in autocomplete
	Better admin support
	Single tag mode
	Hierarchical tag trees
	And there’s more

	Installation
	Instructions
	Settings
	System checks
	Converting to Tagulous

	Example Usage
	Automatic tag models
	Custom models
	Tag Trees
	Tag URL
	ModelForms
	Forms without models
	Filtering embedded autocomplete
	Filtering autocomplete to initial tags only
	Filtering autocomplete by related fields

	Autocomplete AJAX Views
	Filtering an autocomplete view

	Django REST Framework

	Tag String Parser
	Using the parser directly
	In Python
	In JavaScript

	Models
	Model Fields
	Model Field Arguments
	Auto-generating a tag model
	Specifying a tag model
	to=MyTagModel (or first unnamed argument)
	to_base=MyTagModelBase

	tagulous.models.SingleTagField
	Unbound field
	Bound to an instance

	tagulous.models.TagField
	Unbound field
	Bound to an instance
	tagulous.models.TagRelatedManager
	set_tag_string(tag_string)
	set_tag_list(tag_list)
	get_tag_string()
	get_tag_list()
	__str__(), __unicode__()
	__eq__, __ne__
	__contains__
	reload()
	save(force=False)
	add(tag, tag, ...)
	remove(tag, tag, ...)

	Tag Models
	Tag model classes
	tagulous.models.TagModel
	name
	slug
	count
	protected
	get_related_objects()
	update_count()
	merge_tags(tags)

	tagulous.models.TagModelManager
	filter_or_initial(...)
	weight(min=1, max=6)

	tagulous.models.TagModelQuerySet

	Custom Tag Models
	TagMeta

	Protected tags
	Loading initial tags

	Tag Trees
	Tag Tree Model Classes
	tagulous.models.TagTreeModel
	parent
	children
	label
	slug
	path
	level
	merge_tags(tags, children=False)
	get_ancestors()
	get_descendants()
	get_siblings()

	tagulous.models.TagTreeModelManager
	tagulous.models.TagTreeModelQuerySet
	with_ancestors()
	with_descendants()
	with_siblings()

	Converting from to tree tags from normal tags

	Tagged Models
	Tagged model classes
	tagulous.models.TaggedModel
	tagulous.models.TaggedManager
	tagulous.models.TaggedQuerySet

	Setting tagged base classes manually
	Querying using tag fields

	Database Migrations
	Adding unique columns
	Limitations of Django migrations

	Forms
	Form field classes
	tagulous.forms.SingleTagField
	tagulous.forms.TagField
	tagulous.forms.TaggedInlineFormSet

	Filtering autocomplete tags
	Autocomplete Adaptors
	Select2 (version 4)

	Writing a custom autocomplete adaptor

	Tag Options
	Model Options
	initial
	protect_initial
	protect_all
	case_sensitive
	force_lowercase
	max_count
	space_delimiter
	tree
	autocomplete_initial
	autocomplete_view
	autocomplete_view_args
	autocomplete_view_kwargs
	autocomplete_limit
	autocomplete_view_fulltext
	autocomplete_settings
	get_absolute_url
	verbose_name_singular, verbose_name_plural

	Form Options
	The TagOptions Class

	Views and Templates
	Form templates
	Autocomplete views
	Tag clouds

	Admin
	Tag fields in ModelAdmin
	Manually enhancing your ModelAdmin
	Autocomplete settings
	Managing the tag model

	Changelog
	1.3.3, 2021-12-25
	1.3.2, 2021-12-23
	1.3.1, 2021-12-21
	1.3.0, 2021-09-07
	1.2.1, 2021-08-31
	1.2.0, 2021-08-25
	1.1.0, 2020-12-06
	1.0.0, 2020-10-08
	0.14.1, 2019-09-04
	0.14.0, 2019-02-24
	0.13.2, 2018-05-28
	0.13.1, 2018-05-19
	0.13.0, 2018-04-30
	0.12.0, 2017-02-26
	0.11.1, 2015-10-05
	0.11.0, 2015-10-04
	0.10.0, 2015-09-28
	0.9.0, 2015-09-14
	0.8.0, 2015-08-22
	0.7.0, 2015-07-01
	0.6.0, 2015-05-11

	Upgrading
	Instructions
	Upgrading from 1.1.0
	Slugify behaviour

	Upgrading from 0.14.1
	Django and Python support
	Autocomplete upgrade
	Single tag behaviour

	Upgrading from 0.14.0
	Upgrading from 0.13.0
	Upgrading from 0.12.0
	Upgrading from 0.11.1
	Upgrading from 0.9.0
	Upgrading from 0.8.0
	Upgrading from 0.7.0 or earlier

	Contributing
	Installing
	Testing
	Code overview

